header advert
Results 1 - 3 of 3
Results per page:
Applied filters
Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 68 - 68
1 Apr 2018
Hsieh FK Farkas Z Prein C Clausen-Schaumann H Chanalaris A Vincent T Aszodi A
Full Access

Introduction

NF-κB transcription factors regulate a number of genes that are activated under stress conditions. Blockage of the the canonical NF-κB pathway has been emerged as a possible strategy to cure osteoarthritis and rheumatoid arthritis. However, the roles of κNF-B in normal skeletal physiology are largely unknown owing to the lack of suitable animal models. Here, we investigated the function of canonical κNF-B pathway in the cartilaginous skeleton by ablating Nemo (NF-κB essential modulator) in chondrocytes using the Col2a1 transgene.

Methods

Mice were analyzed by skeletal staining, histology, proliferation and apoptosis assays at various stages. Histochemistry, GAG assay and immunohistochemistry were utilized to assess the impact of NEMO-deficiency in cytokine-induced cartilage degradation of hip explants. To identify genes regulated through the canonical NF-κB pathway in response to injury, an ex vivo hip avulsion model was applied. 24 genes known to be induced early following cartilage injury were assessed in wildtype and mutant hips by RT-PCR. Time lapse photography was used to investigate chondrocyte migration in vitro. Atomic force microscopy (AFM) was applied to assess biomechanical properties of the cartilage. Pathological changes of articular cartilage were scored in aged joints.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 77 - 77
1 Apr 2018
Raducanu A Farkas Z Aszodi A
Full Access

Background

The cartilaginous growth plate (GP) is a zonal structure, in which chondrocytes are organized into columns and drive the longitudinal elongation of the endochondral bones. In the proliferative zone (PZ), cells exhibit high mitotic activity, are flattened and oriented along the mediolateral (ML) axis of the GP. Mitotic figures in the elongated chondrocytes lie perpendicular to the proximo-distal (PD) direction of growth, while cell divisions occur parallel to the columns followed by a gliding movement of the daughter cells. The mechanisms responsible for the geometrical anisotropy and columnar arrangement of PZ chondrocytes are poorly understood. Here, we assessed the function of the adhesive receptor β1 integrins on spindle and division geometry in chondrocytes using mouse genetics.

Methods

GP slices were prepared from wild type (wt) and β1fl/fl-Col2a1cre mice. Primary rib chondrocytes were cultured on substrate-coated glass slides and fluorescently stained with anti-alpha-tubulin and anti-pericentrin antibodies, with phalloidin and DAPI. Confocal stacks were built from images acquired by confocal microscopy. Cell and spindle orientation relative to the PD axis (in vivo) or to the substrate plane (SP) in vitro were determined by geometric functions. Shape indexes (SI) were calculated as the ratio of the length and height of the cell.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 82 - 82
1 Apr 2018
Alberton P Farkas Z Prein C Schwarz J Li P Clausen-Schaumann H Oohashi T Aszodi A
Full Access

Introduction

The proteoglycan aggrecan is a major component of the cartilaginous matrices which provides resistance against compressive forces. Spontaneously occurring functional null mutations in the aggrecan gene (Acan) in various species lead to perinatal chondrodysplasia. The aim of the present study was to investigate the cellular and biomechanical properties of the cartilaginous growth plate, and the development of intervertebral disc in a novel, experimentally induced aggrecan mutant mouse strain carrying an insertion in exon 5 of the Acan gene.

Methods

The novel aggrecan mutant mice were generated by inserting a loxP site into exon 5 (E5i) by homologous recombination in ES cells. Wild type and homozygous mutant (Acan-E5i/E5i) mice were analyzed by skeletal staining, histology and immunohistochemistry. Proliferation and survival were assessed by phosphorylated histone H3 immunostaining and TUNEL assay, respectively. Shape index (SI) in the proliferative zone (PZ) of the growth plate (GP) was calculated as a ratio of the long and short axes of the cells. Orientation of the PZ chondrocytes was characterized by the angle between the cell long axis and longitudinal direction of the bone growth. Imaging and stiffness measurements were performed by atomic force microscopy (AFM).