header advert
Results 1 - 2 of 2
Results per page:
Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 121 - 121
1 Apr 2019
Renders T Heyse T Catani F Sussmann P De Corte R Labey L
Full Access

Introduction

Unicompartmental knee arthroplasty (UKA) currently experiences increased popularity. It is usually assumed that UKA shows kinematic features closer to the natural knee than total knee arthroplasty (TKA). Especially in younger patients more natural knee function and faster recovery have helped to increase the popularity of UKA. Another leading reason for the popularity of UKA is the ability to preserve the remaining healthy tissues in the knee, which is not always possible in TKA. Many biomechanical questions remain, however, with respect to this type of replacement.

25% of knees with medial compartment osteoarthritis also have a deficient anterior cruciate ligament [1]. In current clinical practice, medial UKA would be contraindicated in these patients. Our hypothesis is that kinematics after UKA in combination with ACL reconstruction should allow to restore joint function close to the native knee joint. This is clinically relevant, because functional benefits for medial UKA should especially be attractive to the young and active patient.

Materials and Methods

Six fresh frozen full leg cadaver specimens were prepared to be mounted in a kinematic rig (Figure 1) with six degrees of freedom for the knee joint. Three motion patterns were applied: passive flexion-extension, open chain extension, and squatting. These motion patterns were performed in four situations for each specimen: with the native knee; after implantation of a medial UKA (Figure 2); next after cutting the ACL and finally after reconstruction of the ACL. During the loaded motions, quadriceps and hamstrings muscle forces were applied. Infrared cameras continuously recorded the trajectories of marker frames rigidly attached to femur, tibia and patella. Prior computer tomography allowed identification of coordinate frames of the bones and calculations of anatomical rotations and translations. Strains in the collateral ligaments were calculated from insertion site distances.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 46 - 46
1 Dec 2013
Delport H Labey L De Corte R Innocenti B Sloten JV Bellemans J
Full Access

Passive knee stability is provided by the soft tissue envelope which resists abnormal motion. There is a consensus amongst orthopedic surgeons that a good outcome in TKA requires equal tension in the medial and the lateral compartment of the knee joint, as well as equal tension in the flexion and extension gap. The purpose of this study was to quantify the ligament laxity in the normal non-arthritic knee before and after standard posterior-stabilized total knee arthroplasty (PS-TKA). We hypothesized that the medial collateral ligament (MCL) and the lateral collateral ligament (LCL) will show minimal changes in length when measured directly by extensometers in the native human knee during varus/valgus laxity testing. We also hypothesized that due to differences in material properties and surface geometry, native laxity is difficult to be completely reconstructed using contemporary types of PS-TKA.

Methods:

A total of 6 specimens were used to perform this in vitro cadaver test using extensometers to provide numerical values for laxity and varus-valgus tilting in the frontal plane. See Fig. 1 The test set-up.

Findings:

This study enabled a very precise measurement of varus and valgus laxity as compared with the clinical assessment which is a subjective measure. The strains in both ligaments in the replaced knee were different from those in the native knee. Both ligaments were stretched in extension, in flexion the MCL tends to relax and the LCL remains tight. Fig. 2 Initial and maximal strain values in the MCL during valgus and varus laxity testing in different flexion angles. a: intact knee, b: replaced knee. and Fig. 3 Initial and maximal strain values in the LCL during valgus and varus laxity testing indifferent flexion angles. a: intact knee, b: replaced knee.