header advert
Results 1 - 11 of 11
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 71 - 71
17 Apr 2023
Cochrane I Hussain A Kang N Chaudhury S
Full Access

During the COVID-19 pandemic, video/phone consultations (VPC) were increasingly utilised as an alternative to face-to-face (F2F) consultations, to minimise nosocomial viral exposure. We previously demonstrated that VPCs were highly rated by both patients and clinicians. This study compared satisfaction between both clinic modalities in contemporaneously delivered outpatient surveys. We also assessed the feasibility and effects of converting F2F orthopaedic consultations to VPC.

Surveys were posted to patients who attended VPCs and F2F consultations at a large tertiary centre from August to October 2020 inclusive, across 51 specialties. F2F and VPC patients ranked their overall satisfaction with their consultation on a 10-point numerical scale (10=highest satisfaction). Simultaneously, a pilot study was undertaken of outpatient fracture clinics to identify patients suitable for VPCs, with X-rays (if needed) taken and transferred from satellite sites to reduce tertiary centre footfall.

For F2F consultations, 1419 of 4465 surveys (31.8%) were returned with similar rates for VPCs (1332 of 4572, 29.1%). While mean satisfaction ratings were high for both clinic modalities, they were significantly higher for F2F: 9.13 (95% CI 9.05-9.22) for F2F clinics, compared to 8.23 (95% CI 8.11-8.35) for VPCs (p<0.001, t-test). F2F patients were almost four times more likely to state a preference for future F2F appointments compared to VPCs, whereas patients who attended VPCs showed an equal preference for either option (p< 0.001, chi2 test). 53% of 111 fracture clinic patients sampled were identified as suitable for VPCs. 1 patient (1.7%) requested their VPC to be converted to F2F due to poor symptom control.

Our study showed patients reported high satisfaction ratings for both F2F clinics and VPCs, with prior experience of VPCs affecting patients’ future preferences. Only 1.7% of F2F patients converted to VPCs declined their virtual appointment. Our results support future use of VPCs.


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_7 | Pages 24 - 24
1 May 2015
Chaudhury S Hurley J White HB Agyryopolous M Woods D
Full Access

Distal radius and ulna fractures are a common paediatric injury. Displaced or angulated fractures require manipulation under anaesthetic (MUA) with or without Kirchner (K) wire fixation to improve alignment and avoid malunion. After treatment a proportion redisplace requiring further surgical management.

This study aimed to investigate whether the risk of redisplacement could be reduced by introducing surgical treatment guidelines to ascertain whether MUA alone or the addition of K wire fixation was required.

A cohort of 51 paediatric forearm fractures managed either with an MUA alone or MUA and K wire fixation was analysed to determine fracture redisplacement rates and factors which predisposed to displacement. Guidelines for optimal management were developed based on these findings and published literature and implemented for the management of 36 further children.

A 16% post-operative redisplacement rate was observed within the first cohort. Redisplacement was predicted if an ‘optimal reduction’ of less than 5° of angulation and/or 10% of translation was not achieved and no K wire fixation utilised. Adoption of the new guidelines resulted in a significantly reduced redisplacement rate of 6%.

Implementation of departmental guidelines have reduced redisplacement rates of children's forearm fractures at Great Western Hospital.


Bone & Joint Research
Vol. 3, Issue 8 | Pages 252 - 261
1 Aug 2014
Tilley JMR Murphy RJ Chaudhury S Czernuszka JT Carr AJ

Objectives

The effects of disease progression and common tendinopathy treatments on the tissue characteristics of human rotator cuff tendons have not previously been evaluated in detail owing to a lack of suitable sampling techniques. This study evaluated the structural characteristics of torn human supraspinatus tendons across the full disease spectrum, and the short-term effects of subacromial corticosteroid injections (SCIs) and subacromial decompression (SAD) surgery on these structural characteristics.

Methods

Samples were collected inter-operatively from supraspinatus tendons containing small, medium, large and massive full thickness tears (n = 33). Using a novel minimally invasive biopsy technique, paired samples were also collected from supraspinatus tendons containing partial thickness tears either before and seven weeks after subacromial SCI (n = 11), or before and seven weeks after SAD surgery (n = 14). Macroscopically normal subscapularis tendons of older patients (n = 5, mean age = 74.6 years) and supraspinatus tendons of younger patients (n = 16, mean age = 23.3) served as controls. Ultra- and micro-structural characteristics were assessed using atomic force microscopy and polarised light microscopy respectively.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 417 - 417
1 Sep 2012
Chaudhury S Xia Z Hulley P Carr A
Full Access

INTRODUCTION

There is increasing evidence for a multi-stage model of rotator cuff (RC) tendon tears, wherein healing is affected by tear size. The underlying pathophysiology however is not fully understood. Changes in the production and remodeling of the RC extracellular matrix (ECM) are likely to be important determinants of RC tendinopathy as they affect healing and the ability to bear loads. This study aimed to gain greater insight into size related tear pathogenesis by analyzing gene expression profiles from normal, small and massive RC tears.

METHODS

The genetic profiles of 28 human RC tendons were analyzed using microarrays representing the entire genome. 11 massive and 5 small torn RC tendon specimens were obtained from tear edges intraoperatively, and compared to 12 age matched normal controls. Semiquantitative real-time polymerase chain reaction (RT-PCR) and immunohistochemistry were performed for validation.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 414 - 414
1 Sep 2012
Chaudhury S Holland C Porter D Vollrath F Carr A
Full Access

Introduction

The pathophysiology of high failure rates following rotator cuff tendon repairs, particularly massive tears, is not fully understood. Collagen structural changes have been shown to alter tendon thermal and mechanical properties. Thermal changes in small biopsies, detected by differential scanning calorimetry (DSC) can help to quantify collagen structural differences in torn rotator cuff tendons. This study aimed to form a quantitative rather than qualitative assessment, of whether differences in collagen structure and integrity existed between small biopsies of normal, small and massive rotator cuff tears using DSC.

Methods

Thermal properties were measured for 27 human biopsies taken intra-operatively from normal, small, and massive rotator cuff tendon tears. 3 samples were taken from each patient and subjected to a modulated temperature ramp between 20–80°C at a rate of 2°C per minute with 0.318°C amplitude. The melting temperature (TM) is proposed to represent amide-amide hydrogen bond breakage and resulting protein backbone mobility. Denaturing temperature (TD) reportedly corresponds to the temperature at which the proteins fall out of solution. Denaturation enthalpy (H) should correlate with the amount of triple helical structure. Based upon a pre-study power calculation, this study had 90% power to detect a 10% difference in melting and denaturation temperature between groups with alpha=0.05.

1 specimen per patients was also frozen and cryosectioned and polarised light microscopy was used for quantitative validation. The effect of tear size on heat related parameters were performed using a one-way ANOVA test. A student's unpaired t-test was used to search for differences between individual groups (small tears, massive tears and normal tendons).


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 419 - 419
1 Sep 2012
Chaudhury S Ferguson D Hakimi O Carr A
Full Access

INTRODUCTION

In order to address high failure rates following rotator cuff repairs, a greater understanding is required of the underlying structural changes so that treatments can be appropriately targeted and biomarkers of failure can be identified. As collagen is the primary constituent of tendon and determines force transmission, collagen structural changes may affect responses to loading. For example changes in collagen 1 and 5 are associated with the hyperelastic Ehlers-Danlos syndrome, which is diagnosed by looking for pathopneumonic altered collagen fibres or ‘collagen flowers’ in skin using transmission electron microscopy (TEM). To date no study has been performed on the microstructure of torn human rotator cuff tendons using TEM.

It was hypothesized that normal, small and massive human rotator cuff tendons tears will have altered microscopic structures. The unique study aimed to use TEM to compare the ultrastructure of small and massive rotator cuff tears, to normal rotator cuff tendons.

METHODS

Samples from 7 human rotator cuff tendons repairs were obtained, including 4 massive (>5 cm) and 3 small (< 1 cm) tears, and 3 matched normal controls with no history of connective tissue disorders. Specimens were fixed in 4% glutaraldehyde in 0.1M phosphate buffer, processed and examined blind using routine TEM examination.

To assess whether changes in the relative expression of collagen 1 and 5 (COL1A1, COL5A1 and COL5A2) occurred in all tears, qPCR was performed on another 6 phenotypically matched patients.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVIII | Pages 42 - 42
1 May 2012
Chaudhury S Holland C Porter D Vollrath F Carr AJ
Full Access

Background

High re-rupture rates following repairs of rotator cuff tears (RCTs) have resulted in the increased use of repair grafts to act as temporary scaffolds to support tendon healing. It has been estimated that thousands of extracellular matrix repair grafts are used annually to augment surgical repair of rotator cuff tears. The only mechanical assessment of the suitability of these grafts for rotator cuff repair has been made using tensile testing only, and compared grafts to canine infraspinatus. As the shoulder and rotator cuff tendons are exposed to shearing as well as uniaxial loading, we compared the response of repair grafts and human rotator cuff tendons to shearing mechanical stress. We used a novel technique to study material deformation, dynamic shear analysis (DSA).

Methods

The shear properties of four RCT repair grafts were measured (Restore, GraftJacket, Zimmer Collagen Repair and SportsMesh). 3mm-sized biopsy samples were taken and subjected to DSA using oscillatory deformation under compression to calculate the storage modulus (G') as an indicator of mechanical integrity. To assess how well the repair grafts were matched to normal rotator cuff tendons, the storage modulus was calculated for 18 human rotator cuff specimens which were obtained from patients aged between 22 and 89 years (mean age 58.8 years, with 9 males and 9 females). Control human rotator cuff tendons were obtained from the edge of tendons during hemiarthoplasties and stabilisations.

A 1-way ANOVA of all of the groups was performed to compare shear properties between the different commercially available repair grafts and human rotator cuff tendons to see if they were different. Specific comparison between the different repair grafts and normal rotator cuff tendons was done using a Dunn's multiple comparison test.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVIII | Pages 10 - 10
1 May 2012
Chaudhury S Holland C Porter D Vollrath F Carr AJ
Full Access

Improved understanding of the biomechanics and biology of rotator cuff tendons (RCT) may help reduce high re-rupture rates following repairs, particularly amongst larger tears. This study aims to use novel methods for quantitatively determining differences in the mechanical and thermal properties of intact healthy RCTs compared to torn ‘diseased’ tendons. A common problem in the mechanical testing of small tendon samples is that stress risers at the clamp-tendon interface can obscure measurements. As the shoulder is subject to shear, tension and compression, we developed a novel solution using Dynamic Shear Analysis (DSA), a form of rheology which studies material deformation. As collagen is the main component of RCT, the structure and mechanical properties may be affected by collagen conformational changes. Both dermis and rat tail tendon with increased collagen cross-linking exhibit stronger mechanical properties. Thermal changes detected by differential scanning calorimetry (DSC) can help to quantify collagen structural differences in torn RCT, and has been previously used to study muscle, cartilage and vertebral discs.

There were 79 tears (mean age 65.2 years), which were classified according to the size of the tear as small, medium, large and massive. Two separate 3mm-sized biopsy samples were taken and subjected to DSA using oscillatory deformation under compression. The storage modulus (G') was calculated and used as an indicator of mechanical integrity. 18 control tendon specimens were obtained from patients aged between 22-89 years (mean age 58.8 years) during shoulder hemiarthroplasties and stabilisations. Additionally 7 normal, 7 small and 7 massive frozen specimens were thermally characterized. 3 samples per patient were heated between 20-80oC in hermetically sealed vessels. Useful thermal parameters were measured such as the melting temperature (TM) which apparently represents breaking of the amide-amide bonds and protein chains mobility, the denaturation temperature (TD) which supposedly corresponds to proteins falling out of solution and the denaturation enthalpy (ΔH) which reflects the relative amount of triple helical structure.

Healthy tendons had a significantly higher modulus than torn tendons, indicating that torn tendons are mechanically weaker than normal tendons (p = 0.032). Normal tendons had significantly higher mean shear modulus than tendons with small and massive tears (p<0.01). Overall there was a negative correlation between moduli and severity of tendon tear (r = −0.698, p=0.189). The moduli did not significantly correlate with age, sex, hand dominance, or length of preservation in formalin. Massive RCT tears had significantly higher TM and TD when compared to normal RCT (p < 0.05), unlike small RCT tears. No significant difference was detected between the denaturation enthalpy of the different RCT groups. This case control study has demonstrated that normal RCTs have a significantly higher modulus than torn tendons, indicating that torn tendons have less mechanical integrity. Our study further demonstrated a trend between increasing tear size and decreasing mechanical integrity. This study has also demonstrated differences in some of the thermal properties of normal and torn RCTs. These are likely due to collagen structural changes. A decrease in the denaturation temperature of torn tendons, suggests that the material is intrinsically less stable. Torn tendons with reduced storage modulus and collagen integrity may be less able to withstand mechanical loads following repair. This pilot study provides some preliminary insight into the mechanisms that may contribute to, or represent adaptations to high rates of failure of RCT repairs.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 7 | Pages 942 - 948
1 Jul 2011
Chaudhury S Holland C Vollrath F Carr AJ

This study reports the application of a novel method for quantitatively determining differences in the mechanical properties of healthy and torn rotator cuff tissues. In order to overcome problems of stress risers at the grip-tendon interface that can obscure mechanical measurements of small tendons, we conducted our investigation using dynamic shear analysis.

Rotator cuff tendon specimens were obtained from 100 patients during shoulder surgery. They included 82 differently sized tears and 18 matched controls. We subjected biopsy samples of 3 mm in diameter to oscillatory deformation under compression using dynamic shear analysis. The storage modulus (G’) was calculated as an indicator of mechanical integrity.

Normal tendons had a significantly higher storage modulus than torn tendons, indicating that torn tendons are mechanically weaker than normal tendons (p = 0.003). Normal tendons had a significantly higher mean shear modulus than tendons with massive tears (p < 0.01).

Dynamic shear analysis allows the determination of shear mechanical properties of small tissue specimens obtained intra-operatively that could not be studied by conventional methods of tensile testing. These methods could be employed to investigate other musculoskeletal tissues. This pilot study provides some insight into mechanisms that might contribute to the failure of repair surgery, and with future application could help direct the most appropriate treatment for specific rotator cuff tears.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_II | Pages 201 - 201
1 May 2011
Chaudhury S Dicko C Vollrath F Carr A
Full Access

Background: Up to one third of adults have been estimated to have rotator cuff tendon (RCT) tears. Larger RCT tears are associated with poorer scores and function, and are more likely to re-rupture after surgical repairs, hence there is a need for earlier identification and treatment. The aim of this study was to identify biomarkers of RCT tear pathologies to aid accurate identification and monitoring of disease progression. FTIR provides unique biochemical fingerprints of tissue specimens. All molecules are excited to higher vibrational states at specific wavelengths, which can be used to identify the chemical composition of tissues.

Methods: The chemical composition of 55 formalin-fixed RCTs was measured from patients aged between 20 and 89. RCT tears were classified according to size (Post et al.); 10 each of small, medium, large and massive and 5 partial tears. These torn RCTs were compared to 10 uninjured RCTs. A diamond attenuated total reflectance accessory was used with a FTIR spectrometer to collect spectra for each sample. The spectra were reduced and classified using standard multivariate analysis; principal component analysis (PCA), partial least square (PLS) and discriminant function analysis (DFA). Data pre-processing was applied to ensure accurate quantitative data analysis.

Results: Hierarchical cluster (HCA) demonstrated that normal and torn tendons could be clearly differentiated, and RCT could also be distinguished by their tear size. Partial tears were clearly distinguishable from normal RCT. Using a genetic algorithm we identified the following spectral regions of importance which accounted for most of the features which discriminated between normal and torn tendons:

1030–1200cm-1: carbohydrates, phospholipids,

1300–1700, 3000–3350cm-1: collagen structural conformation and

2800–3000 cm-1: lipids.

Partial tears were distinguishable from other stages of tendon pathology based on a spectral region which correlated with collagen III.

Conclusions: FTIR can clearly distinguish normal and different sized RCT tears. This prospective non-randomized study indicates that the onset of RCT tear pathology is mainly due to an alteration of the collagen structural arrangements, with associated changes in lipids and carbohydrates. Partial tears show early onset of chemical changes, particularly in collagen III, which could be used to identify earlier stages of disease. The approach described is rapid and has the potential to be used per-operatively to determine the quality of the tendon and extent of disease, thus guiding surgical repairs or allowing monitoring of disease progression or response to treatments.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 3 | Pages 370 - 377
1 Mar 2011
Chaudhury S Dicko C Burgess M Vollrath F Carr AJ

We have used Fourier transform infrared spectroscopy (FTIR) to characterise the chemical and structural composition of the tendons of the rotator cuff and to identify structural differences among anatomically distinct tears. Such information may help to identify biomarkers of tears and to provide insight into the rates of healing of different sizes of tear. The infrared spectra of 81 partial, small, medium, large and massive tears were measured using FTIR and compared with 11 uninjured control tendons. All the spectra were classified using standard techniques of multivariate analysis.

FTIR readily differentiates between normal and torn tendons, and different sizes of tear. We identified the key discriminating molecules and spectra altered in torn tendons to be carbohydrates/phospholipids (1030 cm−1 to 1200 cm−1), collagen (1300 cm−1 to 1700 cm−1 and 3000 cm−1 to 3350 cm−1) and lipids (2800 cm−1 to 3000 cm−1).

Our study has shown that FTIR spectroscopy can identify tears of the rotator cuff of varying size based upon distinguishable chemical and structural features. The onset of a tear is mainly associated with altered structural arrangements of collagen, with changes in lipids and carbohydrates. The approach described is rapid and has the potential to be used peri-operatively to determine the quality of the tendon and the extent of the disease, thus guiding surgical repair.