header advert
Results 1 - 5 of 5
Results per page:
Applied filters
Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_I | Pages 3 - 3
1 Jan 2011
Baker RP Kilshaw MJ Gardner R Charosky S Harding IJ
Full Access

The incidence of degenerative scoliosis in the lumbar spine is not known. In the ageing population deformity may coexist or cause stenosis. MRI gives limited information on this important parameter in the treatment of stenosis. The aim of this study was to highlight the incidence of coronal abnormalities of the lumbar spine dependent on age in a large population of patients.

We reviewed all abdominal radiographs performed in our hospital over ten months. 2276 radiographs were analysed for degenerative lumbar scoliosis and lateral vertebral slips in patients who are ≥ 20 years old. Evidence of osteoarthritis of the spine was also documented. Radiographs were included if the inferior border of T12 to the superior border of S1 was visualised and no previous spinal surgery was evident (metal work).

2233 (98%) radiographs were analysed. 48% of patients were female. The incidence of degenerative lumbar scoliosis, lateral listhesis and osteoarthritis increased with age. Degenerative scoliosis was present in 1.6% of 30–39 year olds increasing every decade to 29.7% of patients 90 years or older. In all age groups curves were more frequent and had greater average Cobb angles in female patients except in the 30–39 year olds - where males equalled females.

Degenerative lumbar scoliosis starts to appear in the third decade of life increasing in frequency every decade thereafter, affecting almost a third of patients in the ninth decade. It is more common in female patients and has a greater magnitude. Deformity may be even greater on standing views and is important to recognise in all patients that are undergoing lumbar spinal decompressive surgery. A failure to do so may lead to inferior results or the need for further surgery.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_I | Pages 27 - 27
1 Jan 2011
Baker R Kilshaw M Gardner R Charosky S Harding I
Full Access

The incidence of degenerative scoliosis in the lumbar spine is not known. In the ageing population deformity may coexist or cause stenosis. MRI gives limited information on this important parameter in the treatment of stenosis. The aim of this study was to highlight the incidence of coronal abnormalities of the lumbar spine dependent on age in a large population of patients.

We reviewed all abdominal radiographs performed in our hospital over ten months. 2276 radiographs were analysed for degenerative lumbar scoliosis and lateral vertebral slips in patients who are over 20 years. Evidence of osteoarthritis of the spine was also documented. Radiographs were included if the inferior border of T12 to the superior border of S1 was visualised and no previous spinal surgery was evident (metal work).

2233 (98%) radiographs were included. 48% of patients were female. The incidence of degenerative lumbar scoliosis, lateral listhesis and osteoarthritis increased with age. Degenerative scoliosis was present in 1.6% of 30–39 year olds increasing every decade to 29.7% of patients 90 years or older. In all age groups curves were more frequent and had greater average Cobb angles in female patients.

Degenerative lumbar scoliosis starts to appear in the third decade of life increasing in frequency every decade thereafter, affecting almost a third of patients in the ninth decade. It is more common in female patients and has a greater magnitude. Deformity may be even greater on standing views and is important to recognise in all patients that are undergoing lumbar spinal decompressive surgery. A failure to do so may lead to inferior results or the need for further surgery.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_III | Pages 484 - 484
1 Sep 2009
Baker R P Kilshaw M Gardner R Charosky S Harding IJ
Full Access

Introduction: The incidence of degenerative scoliosis in the lumbar spine is not known. In the ageing population deformity may coexist or cause stenosis. MRI gives limited information on this important parameter and is often the only investigation used pre-operatively in the treatment of stenosis. The aim of this study was to highlight the incidence of coronal abnormalities of the lumbar spine dependent on age in a large population of patients requiring abdominal and KUB radiographs at our institution.

Method: We reviewed all abdominal and KUB radiographs performed in our hospital in the first ten months from the introduction of our digital PACS system. 2276 radiographs were analysed for the incidence of degenerative lumbar scoliosis and lateral vertebral slips in patients who are ≥ 20 years old, in ten-year age ranges. Evidence of osteoarthritis of the spine was also documented. Radiographs were included if the inferior border of T12 to the superior border of S1 was visualised and no previous spinal surgery was evident (metal work/laminectomy).

Results: 2233 (98%) radiographs were analysed. 48% of patients were female. The youngest patient was 20 and the oldest 101 years. The incidence of degenerative lumbar scoliosis, lateral listhesis and osteoarthritis increased with age.

In all age groups curves were more frequent and had greater average Cobb angles in female patients except in the 30–39 year olds–where the males equalled females in frequency and had the greatest Cobb angles.

Conclusions: Degenerative lumbar scoliosis starts to appear in the third decade of life and increases in frequency every decade thereafter, affecting almost a third of patients in the ninth decade. It is more common in female patients and has a greater magnitude. Deformity may be even greater on standing views and is important to recognise in all patients that are undergoing lumbar spinal decompressive surgery. A failure to do so may lead to inferior results or the need for further surgery.


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_III | Pages 453 - 453
1 Aug 2008
Harding I Charosky S Ockendon M Vialle R Chopin D
Full Access

Purpose: To evaluate the long term clinical outcomes as well as radiological changes in distal unfused mobile segments and to evaluate factors that may predispose to distal disc degeneration and/or poor outcome.

Method: 151 mobile segments in 85 patients (65 female), mean age 43.2 (range 21–68), were studied. Curve type, number of fused levels and pelvic incidence were recorded. Clinical outcome was measured using the Whitecloud function scale and disc degeneration using the UCLA disc degeneration score. Spinal balance, local segmental angulations and lumbar lordosis were measured pre- and post-operatively as well as at the most recent follow up – mean 9.3 years (range 7–19).

Results: 62% of patients had a good or excellent outcome. 11 had a poor outcome of which 10 underwent extension of fusion – 5 for pain alone, 3 pain with stenosis and 2 pseudarthroses. Pre-operative disc degeneration was often asymmetric and was slightly greater in older patients. Overall, there was a significant deterioration in disc degeneration (p< 0.0001) that did not correlate with clinical outcome. Disc degeneration correlated with the recent sagittal balance (Anova F=14.285, p< 0.001) and the most recent lordosis (Anova F=4.057, p=0.048). The post-operative sagittal balance and local L5-S1 sagittal angulation correlated to L4 and L5 degeneration respectively. There was no correlation between degeneration and age, pre-operative degenerative score, pelvic incidence, sacral slope, number of fused levels or distal level of fusion.

Conclusion: Disc degeneration does occur below an arthrodesis for scoliosis in adults which does not correlate with clinical outcome. The correlation of loss of sagittal balance with disc degeneration may be as a result of degeneration causing the loss of balance or vice versa i.e. sagittal imbalance causing degeneration. Immediate post-operative imbalance correlates with degeneration of the L4/5 disc, which may imply the latter.


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_III | Pages 450 - 450
1 Aug 2008
Charosky S Harding IJ Vialle R Chopin D
Full Access

Purpose: To evaluate the indications, outcome, risk factors and complications of transpedicular osteotomy (TPO) in revision scoliosis surgery

Methods: We evaluated patients undergoing TPO for revision scoliosis surgery at our institution between 1989 and 2004 with a minimum follow up of 18 months. Demographic data, anaesthetic risk factors, peri-operative data and complications were recorded. Radiographs pre-operatively, post-operatively and at last follow up recorded sagittal balance, coronal balance, lumbar lordosis and pelvic parameters. Functional outcome was measured using the Whitecloud score.

Results: 21 patients (24 TPO’s) mean age 48.7 years with mean follow up 4.4 years fulfilled criteria for study. All cases had fixed sagittal imbalance pre-operatively. Mean operative time was 4.6 hours and mean transfusion requirement was 2.3. units. A significant improvement (p< 0.03) in sagittal imbalance was gained (although in 3 cases of pseudarthroses this was partially lost) and the post-operative lumbar lordosis correlated closely significantly pelvic incidence (p< 0.03). Functional outcome was good/excellent in 67% cases.

We report 28 complications. 22 early included 4 dural tears, cardiac decompensation with reduction, 5 neurological deficits including a parpaplegia secondary to haematoma which was evacuated and the patient made a good recovery at 6 months, 2 UTIs, IVI infection, superficial wound infection and extension of metalwork due to early proximal decompensation. Late complications included infection (8 years), removal of prominent metalwork, radiculopathy due to screw (6 months) and 3 pseudarthroses. There was no statistically significant correlation of complication with weight, ASA grade or smoking.

Conclusion: TPO in revision scoliosis is an effective method of correcting both coronal and sagittal imbalance but is not without complication, although good functional outcome is achieved in most patients. It is important to consider pelvic parameters pre-operatively to plan the level and magnitude of TPO required.