header advert
Results 1 - 5 of 5
Results per page:
Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_8 | Pages 15 - 15
1 Feb 2013
Ramasamy A Masouros S Newell N Bonner T West A Hill A Clasper J Bull A
Full Access

Current military conflicts are characterised by the use of the Improvised Explosive Device (IED). Improvements in personal protection, medical care and evacuation logistics have resulted in increasing numbers of casualties surviving with complex musculoskeletal injuries, often leading to life-long disability. Thus, there exists an urgent requirement to investigate the mechanism of extremity injury caused by these devices in order to develop mitigation strategies. In addition, the wounds of war are no longer restricted to the battlefield; similar injuries can be witnessed in civilian centres following a terrorist attack.

Key to mitigating such injuries is the ability to deconstruct the complexities of an explosive event into a controlled, laboratory-based environment. In this study, an anti-vehicle underbelly injury simulator, capable of recreating in the laboratory the impulse from an anti-vehicle (AV) explosion, is presented and characterised. Tests were then conducted to assess the simulator's ability to interact with human cadaveric legs. Two mounting conditions were assessed, simulating a typical seated and standing vehicle passenger using instrumented cadaveric lower limbs.

This experimental device, will now allow us (a) to gain comprehensive understanding of the load-transfer mechanisms through the lower limb, (b) to characterise the dissipating capacity of mitigation technologies, and (c) to assess the biofidelity of surrogates.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_8 | Pages 13 - 13
1 Feb 2013
Walker N Eardley W Bonner T Clasper J
Full Access

In a recent publication, 4.6% of 6450 Coalition deaths over ten years were reported to be due to junctional bleeding. The authors suggested that some of these deaths could have been avoided with a junctional hemorrhage control device.

Prospectively collected data on all injuries sustained in Afghanistan by UK military personnel over a 2 year period were reviewed. All fatalities with significant pelvic injuries were identified and analysed, and the cause of death established.

Significant upper thigh, groin or pelvic injuries were recorded in 124 casualties, of which 92 died. Pelvic injury was the cause of death in 42; only 1 casualty was identified where death was at least in part due to a vascular injury below the inguinal ligament, not controlled by a tourniquet, representing <1% of all deaths. Twenty one deaths were due to vascular injury between the aortic bifurcation and the inguinal ligament, of which 4 survived to a medical facility.

Some potentially survivable deaths due to exsanguination may be amenable to more proximal vascular control. We cannot substantiate previous conclusions that this can be achieved through use of a groin junctional tourniquet. There may be a role for more proximal vascular control of pelvic bleeding.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_8 | Pages 14 - 14
1 Feb 2013
Bonner T Singleton J Masouros S Gibb I Kendrew J Clasper J
Full Access

Counter-insurgency warfare in recent military operations has been epitomised by the use of Improvised Explosive Devices (IED) against coalition troops. Emerging patterns of skeletal fractures, limb amputations and organ injuries, which are caused by these weapons have been described over recent years. This paper describes a retrospective case series of knee dislocations caused by IEDs in recent conflict.

Data was obtained about military personnel from 2006 to 2011, who had sustained a knee dislocation while serving in Afghanistan from a prospectively gathered database, the Joint Theatre Trauma Registry (JTTR), maintained by the Academic Department of Military Emergency Medicine, Royal Centre for Defence Medicine. The diagnosis of knee dislocation and its associated skeletal injuries was assessed by review of all relevant plain radiographs, computed tomography scans and magnetic resonance images. The mechanism of injury, incidence of vascular injuries and other skeletal injuries was recorded.

During the study period, 23 casualties sustained a knee dislocation caused by an IED. Four casualties had an associated popliteal vascular injury. Eleven injuries were caused in enclosed spaces, and 10 injuries caused by IEDs out in the open. Anterior dislocations were common in the group caused in enclosed spaces. 19/20 patients had at least one other skeletal fracture.

Knee dislocations represent an uncommon but important diagnosis in modern warfare. Urgent and careful assessment for any associated vascular injuries or other skeletal injuries may help ensure timely treatment and promote future recovery. Mitigation against knee dislocation may be possible in the enclosed environment because of the predictable pattern of injury.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XV | Pages 5 - 5
1 Apr 2012
Eardley W Bonner T Gibb I Clasper J
Full Access

Introduction. This is the first study to illustrate spinal fracture distribution and the impact of different injury mechanisms on the spinal column during contemporary warfare. Methods Retrospective analysis of Computed Tomography (CT) spinal images entered onto the Centre for Defence Imaging (CDI) database, 2005-2009. Isolated spinous and transverse process fractures were excluded to allow focus on cases with implications for immediate management and prospective disability burden. Fractures were classified by anatomical level and stability with validated systems.

Clinical data regarding mechanism of injury and associated non-spinal injuries for each patient was recorded. Statistical analysis was performed by Fisher's Exact test. Results 57 cases (128 fractures) were analysed. Ballistic (79%) and non-ballistic (21%) mechanisms contribute to vertebral fracture and spinal instability at all regions of the spinal column. There is a low incidence of cervical spine fracture, with these injuries predominantly occurring due to gunshot wounding. There is a high incidence of lumbar spine fractures which are significantly more likely to be caused by explosive devices than gunshot wounds (p<0.05). 66% of thoracolumbar spine fractures caused by explosive devices were unstable, the majority being of a burst configuration. Associated non-spinal injuries occurred in 60% of patients.

There is a strong relationship between spinal injuries caused by explosive devices and lower limb fractures Conclusion Explosive devices account for significant injury to both combatants and civilians in current conflict. Injuries to the spine by explosions account for greater numbers, associated morbidity and increasing complexity than other means of injury.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XV | Pages 20 - 20
1 Apr 2012
Bonner T Green S McMurty I
Full Access

Background

Locking internal fixation through a relatively small surgical dissection presents an innovative technique for managing distal tibial extra-articular fractures.

The aim of this study is to evaluate the biomechanical properties of one locking internal fixation plate used to treat these injuries.

Method

An AO/OTA43-A3 fracture was created in synthetic composite tibiae. Locking internal fixation was achieved with an anatomically pre-contoured medial distal tibial locking plate.

Comparisons were made between different screw configurations in holes proximal to the fracture and monocortical versus bicortical fixation. Axial stiffness was measured using a universal materials testing machine. Finite element analysis (FEA) was used to model the elastic deformation of the constructs. Outcome measures were axial stiffness under physiological loading conditions and compression load to failure.