header advert
Results 1 - 4 of 4
Results per page:
Applied filters
Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 47 - 47
2 Jan 2024
Cerveró-Varona A Canciello A Prencipe G Peserico A Haidar-Montes A Santos H Russo V Barboni B
Full Access

The application of immune regenerative strategies to deal with unsolved pathologies, such as tendinopathies, is getting attention in the field of tissue engineering exploiting the innate immunomodulatory potential of stem cells [1]. In this context, Amniotic Epithelial Cells (AECs) represent an innovative immune regenerative strategy due to their teno-inductive and immunomodulatory properties [2], and because of their high paracrine activity, become a potential stem cell source for a cell-free treatment to overcome the limitations of traditional cell-based therapies. Nevertheless, these immunomodulatory mechanisms on AECs are still not fully known to date. In these studies, we explored standardized protocols [3] to better comprehend the different phenotypic behavior between epithelial AECs (eAECs) and mesenchymal AECs (mAECs), and to further produce an enhanced immunomodulatory AECs-derived secretome by exposing cells to different stimuli. Hence, in order to fulfill these aims, eAECs and mAECs at third passage were silenced for CIITA and Nrf2, respectively, to understand the role of these molecules in an inflammatory response. Furthermore, AECs at first passage were seeded under normal or GO-coated coverslips to study the effect of GO on AECs, and further exposed to LPS and/or IL17 priming to increase the anti-inflammatory paracrine activity. The obtained results demonstrated how CIITA and Nrf2 control the immune response of eAECs and mAECs, respectively, under standard or immune-activated conditions (LPS priming). Additionally, GO exposition led to a faster activation of the Epithelial-Mesenchymal transition (EMT) through the TGFβ/SMAD signaling pathway with a change in the anti-inflammatory properties. Finally, the combinatory inflammatory stimuli of LPS+IL17 enhanced the paracrine activity and immunomodulatory properties of AECs. Therefore, AECs-derived secretome has emerged as a potential treatment option for inflammatory disorders such as tendinopathies.

Acknowledgement: This research is part of the P4FIT project ESR1, funded under the H2020-ITN-EJD-Marie-Skłodowska-Curie grant agreement 955685.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 48 - 48
2 Jan 2024
Faydaver M Russo V Di Giacinto O El Khatib M Rigamonti M Rosati G Raspa M Scavizzi F Santos H Mauro A Barboni B
Full Access

Digital Ventilated Cages (DVC) offer an innovative technology to obtain accurate movement data from a single mouse over time [1]. Thus, they could be used to determine the occurrence of a tendon damage event as well as inform on tissue regeneration [2,3]. Therefore, using the mouse model of tendon experimental damage, in this study it has been tested whether the recovery of tissue microarchitecture and of extracellular matrix (ECM) correlates with the motion data collected through this technology.

Mice models were used to induce acute injury in Achilles tendons (ATs), while healthy ones were used as control. During the healing process, the mice were housed in DVC cages (Tecniplast) to monitor animal welfare and to study biomechanics assessing movement activity, an indicator of the recovery of tendon tissue functionality. After 28 days, the AT were harvested and assessed for their histological and immunohistochemical properties to obtain a total histological score (TSH) that was then correlated to the movement data.

DVC cages showed the capacity to distinguish activity patterns in groups from the two different conditions. The data collected showed that the mice with access to the mouse wheel had a higher activity as compared to the blocked wheel group, which suggests that the extra movement during tendon healing improved motion ability. The histological results showed a clear difference between different analyzed groups. The bilateral free wheel group showed the best histological recovery, offering the highest TSH score, thus confirming the results of the DVC cages and the correlation between movement activity and structural recovery.

Data obtained showed a correlation between TSH and the DVC cages, displaying structural and movement differences between the tested groups. This successful correlation allows the usage of DVC type cages as a non-invasive method to predict tissue regeneration and recovery.

Acknowledgements: This research is part of the P4FIT project ESR13, funded by the H2020-ITN-EJD MSCA grant agreement No.955685.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 12 - 12
2 Jan 2024
Montes A Mauro A Cerveró-Varona A Prencipe G El Khatib M Tosi U Wouters G Stöckl J Russo V Barboni B
Full Access

Adipose-derived stem cells (ADSCs) are an effective alternative for Teno-regeneration. Despite their applications in tendon engineering, the mechanisms promoting tendon healing still need to be understood. Since there is scattered information on ovine ADSCs, this research aims to investigate in vitro their teno-differentiation for potential use in preclinical tendon regeneration models.

Ovine ADSCs were isolated from the tail region according to FAT-STEM laboratories, expanded until passage six (P6), and characterized in terms of stemness, adhesion and MHC markers by Flow Cytometry (FCM) and immunocytochemistry (ICC). Cell proliferation and senescence were evaluated with MTT and Beta-galactosidase assays, respectively. P1 ADSCs’ teno-differentiation was assessed by culturing them with teno-inductive Conditioned Media (CM) or engineering them on tendon-mimetic PLGA scaffolds. ADSCs teno-differentiation was evaluated by morphological, molecular (qRT-PCR), and biochemical (WesternBlot) approaches.

ADSCs exhibited mesenchymal phenotype, positive for stemness (SOX2, NANOG, OCT4), adhesion (CD29, CD44, CD90, CD166) and MHC-I markers, while negative for hematopoietic (CD31, CD45) and MHC-II markers, showing no difference between passages. ICC staining confirmed these results, where ADSCs showed nuclear positivity for SOX2 (≅ 56%) and NANOG (≅ 67%), with high proliferation capacity without senescence until P6. Interestingly, ADSCs cultured with the teno-inductive CM did not express tenomodulin (TNMD) protein or gene. Conversely, ADSCs seeded on scaffolds teno-differentiated, acquiring a spindle shape supported by TNMD protein expression at 48h (p<0.05 vs. ADSCs 48h) with a significant increase at 14 days of culture (p<0.05 vs. ADSCs + fleece 48h).

Ovine ADSCs respond differently upon distinct teno-inductive strategies. While the molecules on the CM could not trigger a teno-differentiation in the cells, the scaffold's topological stimulus did, resulting in the best strategy to apply. More insights are requested to better understand ovine ADSCs’ tenogenic commitment before using them in vivo for tendon regeneration.

Acknowledgements: This research is part of the P4FIT project ESR5, under the H2020MSCA-ITN-EJD-P4 FIT-Grant Agreement ID:955685.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 105 - 105
1 Dec 2020
Marchiori G Berni M Veronesi F Cassiolas G Muttini A Barboni B Martini L Fini M Lopomo NF Marcacci M Kon E
Full Access

No therapeutic strategy, administered in the early stage of osteoarthritis (OA), is fully able to block the degenerative and inflammatory progress of the pathology, whose only solution remains surgery. Aiming to identify minimally invasive therapies able to act on both degenerative and inflammatory processes, infiltrative treatments based on mesenchymal stem cells represent a promising solution due to their proliferative, immunomodulatory, anti-inflammatory, and paracrine ability. Accordingly, the aim of the present study was to investigate the performance of different cell therapies (stem cells from adipose tissue, ADSCs, stromal vascular fraction, SVF, and culture expanded, AECs vs negative control NaCl) in the treatment of OA. An in vivo model of early OA was developed in sheep knee (research protocol N.62/2018-PR date 29/01/2018 approved by the local Ethical Committee). Three and six months after the treatments injections, gross evaluation of articular surfaces (damage score, DS), histological (cartilage thickness, Th; fibrillation index, FI; collagen II content, C2) and mechanical assessment (elastic modulus, E; stress-relaxation time, τ) of cartilage were carried out. Due to the importance of the relationship between structure/composition (histology) and function (mechanics), this study investigated which of the revealed parameters were involved in such relation and how they were influenced by the level of degeneration and by the specific cell treatment, thus to better understand cell-tissue interaction.

A statistically significant multi-variable linear regression model was found between τ and Th, FI, C2 (R2 0.7, p-value 8.39E-5). The relation was particularly strong between τ and C2 (p-value 7E-4), with a positive coefficient of 0.92. This is in agreement with literature, where a higher cartilage viscosity was related to a major content of collagen. By dividing the samples in two groups depending on cartilage damage, the more degenerated group (DS > 5) showed statistically significant lower C2 (p-value 0.0124) and τ (p-value 0.05), confirming that collagen content and viscosity decrease with OA grade increasing. Averaging the entire group of samples, the OA degeneration progressed between 3 and 6 months after, and despite, the treatment. But focusing on specific treatments, SVF and AECs differed from the general trend, inducing a higher amount of collagen at 6 months respect to 3 months. Moreover, articular cartilage treated by AECs and, overall, SVF showed a higher content of collagen and a major viscosity respect to the other treatments.

We conclude that an injection of mesenchymal stem cells from stromal vascular fraction in early OA articulations could hinder the degenerative process, preserving or even restoring collagen content and viscosity of the articular cartilage.