header advert
Results 1 - 6 of 6
Results per page:
Applied filters
Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 21 - 21
1 Apr 2018
Keppler A Neuerburg C Westphal I Aszodi A Böcker W Schieker M
Full Access

Introduction

Osteoarthritis (OA) is a slow progressive disease and a huge economic burden. A new target for therapy could be a growth factor treatment to prevent the loss of cartilage following injuries to the joint. BMP-7 is a promising candidate for such a novel therapy based on growth factors. In this study we combined the chondroprotective effects of BMP-7 with a novel thermosensitive hydrogel to prevent cartilage degeneration in a murine OA model.

M&M

A BDI based thermosensitive hydrogel (Pluronic 123 with Butandiisyocyanate (BDI); LivImplant GmbH, Germany) was augmented with BMP-7 (rh-BMP-7, Olympus Biotech, France; 0.2 µg BMP-7/10µg Hydroge). To investigate the effects on OA progression we used the murine DMM (Destabilization of the medial meniscus) model for OA induction. Animal testing was approved by the Government Commitee of Upper Bavaria (file reference: 55.2-1-54-2532-150-13). A total of 38 C57BL/6 mice were included in this study. Immediately after the DMM surgery and wound closure BMP-7 mixed with BDI Hydrogel or only the BDI Hydrogel was administered via intraarticular injection. The following groups were examined: A) BMP-7 augmented BDI hydrogel B) only BDI hydrogel C) no injection following surgery D) control, healthy contralateral knee joint. After 4 (n=4 per group) and 8 (n=8) weeks mice were euthanized and knees were compared histologically.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 68 - 68
1 Apr 2018
Hsieh FK Farkas Z Prein C Clausen-Schaumann H Chanalaris A Vincent T Aszodi A
Full Access

Introduction

NF-κB transcription factors regulate a number of genes that are activated under stress conditions. Blockage of the the canonical NF-κB pathway has been emerged as a possible strategy to cure osteoarthritis and rheumatoid arthritis. However, the roles of κNF-B in normal skeletal physiology are largely unknown owing to the lack of suitable animal models. Here, we investigated the function of canonical κNF-B pathway in the cartilaginous skeleton by ablating Nemo (NF-κB essential modulator) in chondrocytes using the Col2a1 transgene.

Methods

Mice were analyzed by skeletal staining, histology, proliferation and apoptosis assays at various stages. Histochemistry, GAG assay and immunohistochemistry were utilized to assess the impact of NEMO-deficiency in cytokine-induced cartilage degradation of hip explants. To identify genes regulated through the canonical NF-κB pathway in response to injury, an ex vivo hip avulsion model was applied. 24 genes known to be induced early following cartilage injury were assessed in wildtype and mutant hips by RT-PCR. Time lapse photography was used to investigate chondrocyte migration in vitro. Atomic force microscopy (AFM) was applied to assess biomechanical properties of the cartilage. Pathological changes of articular cartilage were scored in aged joints.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 77 - 77
1 Apr 2018
Raducanu A Farkas Z Aszodi A
Full Access

Background

The cartilaginous growth plate (GP) is a zonal structure, in which chondrocytes are organized into columns and drive the longitudinal elongation of the endochondral bones. In the proliferative zone (PZ), cells exhibit high mitotic activity, are flattened and oriented along the mediolateral (ML) axis of the GP. Mitotic figures in the elongated chondrocytes lie perpendicular to the proximo-distal (PD) direction of growth, while cell divisions occur parallel to the columns followed by a gliding movement of the daughter cells. The mechanisms responsible for the geometrical anisotropy and columnar arrangement of PZ chondrocytes are poorly understood. Here, we assessed the function of the adhesive receptor β1 integrins on spindle and division geometry in chondrocytes using mouse genetics.

Methods

GP slices were prepared from wild type (wt) and β1fl/fl-Col2a1cre mice. Primary rib chondrocytes were cultured on substrate-coated glass slides and fluorescently stained with anti-alpha-tubulin and anti-pericentrin antibodies, with phalloidin and DAPI. Confocal stacks were built from images acquired by confocal microscopy. Cell and spindle orientation relative to the PD axis (in vivo) or to the substrate plane (SP) in vitro were determined by geometric functions. Shape indexes (SI) were calculated as the ratio of the length and height of the cell.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 22 - 22
1 Apr 2018
Alberton P Vincent TL Aszodi A
Full Access

Background

Osteoarthritis (OA), a common degenerative disorder of synovial joints, is characterized by disruption of the extracellular matrix (ECM) homeostasis with an overall misbalance towards cartilage catabolism. Integrins are alpha/beta heterodimeric transmembrane proteins transmitting chemical and biomechanical signals into the cells. There is a growing consensus that changes of ECM composition by proteolytic degradation of matrix constituents, or alteration of the biomechanical microenvironment of chondrocytes caused by chronic stress or injury significantly increase the risk of OA through the perturbation of integrin signaling. In order to further investigate the role of the b1 integrin subfamily in OA, we have challenged hip cartilage explants dissected for mice lacking beta1 integrins in chondrocytes by cytokines, ECM degradation products or mechanical stimulation.

Methods

Femoral articular cartilages were avulsed from hip joints of 6 weeks old wild type (WT) and b1fl/fl-PrxCre mutant (MT) mice. For the chemically-induced OA-like stimulation, femoral caps were cultured for 3 days in serum-free DMEM/F12 with or without the supplementation of interleukin-1a (IL1a), 120kDa cell-binding fibronectin fragments (120FNf), or tumor necrosis factor-alpha (TNFa) + oncostatin M (OM). Sulphated glycosaminoglycan (sGAG) release of the explants were measured in the supernatants by the 1,9-dimethylmethlene blue (DMMB) assay. Proteoglycan loss was monitored by Safranin-O (SO) staining on cryo-sections of the explants. For the cartilage injury model, avulsed femoral caps were either directly snap-frozen or kept in serum-free DMEM/F12 for 4 hours before snap-freezing. Gene expression changes were analyzed by quantitative RT-PCR using a pre-determined set of genes regulated by injury.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 82 - 82
1 Apr 2018
Alberton P Farkas Z Prein C Schwarz J Li P Clausen-Schaumann H Oohashi T Aszodi A
Full Access

Introduction

The proteoglycan aggrecan is a major component of the cartilaginous matrices which provides resistance against compressive forces. Spontaneously occurring functional null mutations in the aggrecan gene (Acan) in various species lead to perinatal chondrodysplasia. The aim of the present study was to investigate the cellular and biomechanical properties of the cartilaginous growth plate, and the development of intervertebral disc in a novel, experimentally induced aggrecan mutant mouse strain carrying an insertion in exon 5 of the Acan gene.

Methods

The novel aggrecan mutant mice were generated by inserting a loxP site into exon 5 (E5i) by homologous recombination in ES cells. Wild type and homozygous mutant (Acan-E5i/E5i) mice were analyzed by skeletal staining, histology and immunohistochemistry. Proliferation and survival were assessed by phosphorylated histone H3 immunostaining and TUNEL assay, respectively. Shape index (SI) in the proliferative zone (PZ) of the growth plate (GP) was calculated as a ratio of the long and short axes of the cells. Orientation of the PZ chondrocytes was characterized by the angle between the cell long axis and longitudinal direction of the bone growth. Imaging and stiffness measurements were performed by atomic force microscopy (AFM).


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 37 - 37
1 Apr 2018
Taha S Saller M Haas E Alberton P Aszodi A Giunta R Volkmer E
Full Access

Background

Carpometacarpal osteoarthritis is a degenerative disease of the hand that causes pain, stiffness and weakness. Currently, no drugs are available to prevent progression or cure this disease. Ultimately, the last treatment option is the surgical removal of the trapezium bone. In order to this limited treatment options, the utilization of autologous fat injections or adipose-derived stem progenitor cells (ADSPCs) provides a novel treatment option to inhibit the progression of this disease and potentially regenerate the damaged tissue.

Objective

By utilizing next-generation-sequencing (NGS), we aim to uncover novel factors, released by ADSPCs or whole-fat aspirates, that might be involved into the metabolism of osteoarthritic cartilage.