header advert
Results 1 - 1 of 1
Results per page:
Applied filters
General Orthopaedics

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 109 - 109
1 Jan 2016
Kitahata S Rickers K Orias AE Ringgaard S Andersson G Bunger C Peterson J Robie B Inoue N
Full Access

Introduction

Kinematics analyses of the spine have been recognized as an effective method for functional analysis of the spine. CT is suitable for obtaining bony geometry of the vertebrae but radiation is a clinical concern. MRI is noninvasive but it is difficult to detect bone edges especially at endplates and processes where soft tissues attach. Kinematics analyses require tracking of solid bodies; therefore, bony geometry is not always necessary for kinematics analysis of the spine. This study aimed to develop a reliable and robust method for kinematics analysis of the spine using an innovative MRI-based 3D bone-marrow model.

Materials and Methods

This IRB-approved study recruited 17 patients undergoing lumbar decompression surgery to treat a single-level symptomatic herniation as part of a clinical trial for a new dynamic stabilization device. T1 & T2 sagittal MRI scans were acquired as part of the pre-operative evaluation in three positions: supine and with the shoulders rotated 45° to the left and right to induce torsion of the lumbar spine. 3D bone-marrow models of L5 and S1 at the neutral and rotated positions were created by selecting a threshold level of the bone-marrow intensity at bone-marrow/bone interface. Validated 3D-3D registration techniques were used to track movements of L5 and S1. Segmental movements at L5/S1 during torsion were calculated.