header advert
Results 1 - 7 of 7
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_3 | Pages 10 - 10
1 Mar 2021
Ali M DeSutter C Morash J Glazebrook M
Full Access

Anesthetic peripheral nerve blocks (PNB) have been shown to be more advantageous than general anesthesia in a variety of surgical operations. In comparison to conventional methods of general anesthesia, the choice of regional localized infiltration has been shown to shorten hospital stays, decrease hospital readmissions, allow early mobilization, and reduce narcotic use. Perioperative complications of PNBs have been reported at varying rates in literature. Thus, the purpose of this study was to provide a review on the clinical evidence of PNB complications associated with foot and ankle surgeries.

A systematic review of the literature was completed using PubMed search terms: “lower extremity”, “foot and ankle”, “nerve block”, and “complications”. All studies reporting minor and major complications were considered along with their acute management, treatments, and postoperative follow up timelines. The range of complications was reported for Sensory Abnormalities, Motor Deficits, Skin and systemic complications (local anesthetic systemic toxicity & intravascular injections). A designation of the scientific quality (Level I-IV) of all papers was assigned then a summary evidence grade was determined.

The search strategy extracted 378 studies of which 38 studies were included after criteria review. Block complications were reported in 20 studies while 18 studies had no complications to report. The quality of evidence reviewed ranged from Level I to Level IV studies with follow up ranging from twenty four hours to one-three year timelines. The range of complications for all studies reporting sensory abnormalities was 0.53 to 45.00%, motor deficits 0.05 to 16.22% and skin and systemic complications 0.05 to 6.67%. Sensory abnormalities that persisted at last follow up occurred in six studies with incidence ranging from 0.23 to 1.57%. Two studies reported motor complications of a foot drop with an incidence of 0.05% and 0.12%. When considering only the highest quality studies (Level 1) that had complications to report, the complications rate was 10.00% to 45.00% for sensory abnormalities, 7.81 to 16.22% for motor deficits, 6.67% for skin complications and 2.50% for systemic complications.

High quality studies (Level I providing Summary Grade A Evidence) reporting all complications with a range of incidence from 0 to 45%. While most of these complications were not serious and permanent, some were significant including sensory abnormalities, foot drop and CRPS. Based on this systematic review of the current literature, the authors emphasize a significant rate of complications with PNB and recommend that patients are appropriately informed prior to consenting to these procedures.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_6 | Pages 35 - 35
1 Apr 2018
Al-Hajjar M Lancaster-Jones OO Ali M Jennings L Williams S Fisher J
Full Access

Introduction and Aims

There are many surgical, implant design and patient factors that should be considered in preclinical testing of hip replacement which are not being considered in current standards. The aim of this study was to develop a preclinical testing method that consider surgical positioning, implant design and patient factors and predict the occurrence and severity of edge loading under the combination of such conditions. Then, assess the safety and reliability of the implant by predicting the wear, deformation and damage of the implant bearings under worst case conditions.

Methods

Ceramic-on-ceramic (CoC, 36mm, BIOLOX® delta, Pinnacle®, DePuy Synthes, UK) and metal-on polyethylene (MoP, 36mm, Marathon®, Pinnacle®, DePuy Synthes, UK) bearings were used for this study on multi-station multi-axis hip joint simulators. Two factors were varied, cup inclination angles (45° and 65°) and translational mismatch between the femoral head and acetabular cup (0, 2, 3 and 4 (mm)). Under each condition for both CoC and MoP bearings, three million cycles of gait cycle testing were completed with wear, deformation and/or damage measurements completed at one million cycle intervals. Other outputs of the study were the level of dynamic separation between the femoral head and acetabular cup during gait, the maximum force at the rim during edge loading when the head was sliding back to the cup confinement. Means and 95% confidence limits were determined and statistical analysis were done using one way ANOVA with significance taken at p<0.05.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_22 | Pages 24 - 24
1 Dec 2017
Ferry T Johan A Boucher F Chateau J Hristo S Daoud F Braun E Triffault-Fillit C Perpoint T Laurent F Alain-Ali M Chidiac C Valour F
Full Access

Aim

A two-stage surgical strategy (debridement-negative pressure therapy (NPT) and flap coverage) with prolonged antimicrobial therapy is usually proposed in pressure ulcer-related pelvic osteomyelitis but has not been widely evaluated.

Method

Adult patients with pressure ulcer-related pelvic osteomyelitis treated by a two-stage surgical strategy were included in a retrospective cohort study. Determinants of superinfection (i.e., additional microbiological findings at reconstruction) and treatment failure were assessed using binary logistic regression and Kaplan-Meier curve analysis.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 13 - 13
1 Feb 2017
Ali M Al-Hajjar M Thompson J Isaac G Jennings L Fisher J
Full Access

Introduction

Variations in component position can lead to dynamic separation and edge loading conditions. In vitro methods have been developed to simulate edge loading conditions and replicate stripe wear, increased wear rate, and bimodal wear debris size distribution, as observed clinically [1, 2]. The aim of this study was to determine the effects of translational and rotational positioning on the occurrence of dynamic separation and severity of edge loading, and then investigate the wear rates under the most severe separation and edge loading conditions on an electromechanical hip joint simulator.

Materials and Methods

A hip joint simulator (ProSim EM13, Simulation Solutions, UK) was set up with 36mm diameter ceramic-on-ceramic (BIOLOX®delta, PINNACLE®, DePuy Synthes, UK) hip replacements. Three axes of rotation conditions (ISO 14242-1 [3]) was applied to the femoral head. This study was in two parts. I) A biomechanical test was carried out at 45° (n=3) and 65° (n=3) cup inclination angles with 1, 2, 3 and 4 (mm) medial-lateral translational mismatch between the centres of the head and cup. The amount of dynamic separation displacement between the head and cup was measured using a position sensor. The severity of edge loading was determined from the area under the axial force and medial-lateral force outputs during the time of separation [4]. II) A wear test was carried out at 45° (n=6) and 65° (n=6) cup inclination angles for three million cycles with translational mismatch of 4mm between the head and cup. The lubricant used was diluted new-born calf serum (25% v/v). Volumetric wear measurements were undertaken at one million cycle intervals and mean wear rates were calculated with 95% confidence limits. Statistical analysis was carried out using ANOVA and a t-test with significance levels taken at p<0.05.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 12 - 12
1 Feb 2017
Ali M Al-Hajjar M Jennings L Fisher J
Full Access

Introduction

Edge loading of hip replacements may result in plastic deformation, creep and wear at the rim of the cup and potentially fatigue failure. Variations in component positioning can lead to dynamic separation and edge loading [1]. The aim of this study was firstly to investigate the effects of translational and rotational positioning on the dynamic separation and severity of edge loading, and secondly to determine the wear rates of metal-on-polyethylene bearings under the more severe separation and edge loading conditions.

Materials and Methods

A hip joint simulator (ProSim EM13, Simulation Solutions, UK) was set up with 36mm diameter metal-on-polyethylene hip replacements (Marathon™, DePuy Synthes Joint Reconstruction, Leeds, UK). This study was in two parts. I) A biomechanical test was carried out at 45° (n=3) and 65° (n=3) cup inclination angles with 1, 2, 3 and 4 (mm) medial-lateral translational mismatch between the head and cup centres. The severity of edge loading was calculated from the area under the axial force and medial-lateral force outputs during the time of separation when the load was acting on the edge of the cup [2]. II) For two conditions (two million cycles), the head and cup were concentric for cups inclined equivalent clinically to 45° (n=3) and 65° (n=3). For two further conditions (three million cycles), 4mm medial-lateral translational mismatch between centres was applied for cups inclined equivalent clinically to 45° (n=6) and 65° (n=6). Volumetric wear measurements were undertaken at one million cycle intervals. The lubricant was diluted new-born calf serum (25% v/v). Plastic deformation and wear were determined using a coordinate measurement machine. Mean values were calculated with 95% confidence limits. Statistical analysis was carried out using ANOVA and a t-test with significance levels taken at p<0.05.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 15 - 15
1 May 2016
Ali M Al-Hajjar M Fisher J Jennings L
Full Access

Introduction

Translational surgical mismatch in the centres of rotation of the femoral head and acetabular cup in hip joint replacements can lead to dynamic microseparation resulting in edge loading contact [1]. Increased wear in retrieved ceramic-on-ceramic bearings has been associated with edge loading [2]. Hip joint simulators were used to replicate increased wear rate, stripe wear and bimodal wear debris size distribution, as seen clinically [3,4]. Recently developed electromechanical simulators are able to comply with the latest international standards, which include three axes of rotation conditions [5]. Previous simulators had applied two axes of rotation under microseparation conditions [6]. Therefore, the aim of this study was to compare the wear of ceramic-on-ceramic bearings obtained under edge loading due to microseparation conditions during gait using the same electromechanical hip joint simulator with two axes of rotation and three axes of rotation conditions.

Materials and Methods

A six-station electromechanical hip joint simulator (ProSim EM13, Simulation Solutions, UK) was set up with 36mm diameter ceramic-on-ceramic (BIOLOX® delta, PINNACLE®, DePuy Synthes, UK) hip replacements. The wear was determined for two million cycles under standard conditions with two axes of rotation conditions (n=6), two million cycles under microseparation conditions with two axes of rotation conditions (n=6) (Figure 1a), and two million cycles under microseparation conditions with three axes of rotation conditions (n=6) (Figure 1b). The loading profiles [5,7] comprised of 3kN twin peak loads and 300N swing phase load under standard conditions. The swing phase load was reduced to approximately 70N under microseparation conditions. Approximately 0.5mm of dynamic microseparation between the head and the cup was applied in the medial/lateral direction. The components were lubricated with 25% new-born calf serum supplemented with 0.03% sodium azide to minimise bacterial growth. The gravimetric wear rates were compared over two million cycles for each test (XP205, Mettler Toledo, UK). The mean wear rates of the head and cup were calculated with 95% confidence limits and statistical analysis was carried out (t-test) with significance levels taken at p<0.05. A coordinate-measurement machine (Legex 322, Mitutoyo, UK) was used to construct a three-dimensional map of the femoral head surface wear.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_IV | Pages 9 - 9
1 Mar 2012
Joshi Y Ali M Pradhan N Wainwright O
Full Access

Introduction

We conducted a study of 312 patients undergoing primary hip and knee arthroplasty in 2005. The aim was to identify the correlation between length of stay, ASA (American society of Anaesthesiologist) grade and BMI (Body Mass Index).

Method and materials

312 patients underwent hip and knee arthroplasty in 2005. ASA grade for surgery was documented by the anaesthetist and BMI by the nurses. 67 patients had inadequate documentation. SPSS software was used for analysis.