header advert
Results 1 - 1 of 1
Results per page:
Applied filters
Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 43 - 43
1 Nov 2018
Gluais M Clouet J Fusellier M Decante C Terreaux L Moraru C Veziers J Abadie J Lesoeur J Chew S Guicheux J Le Visage C
Full Access

Extensive annulus fibrosus (AF) radial tears lead to intervertebral disc (IVD) herniation. While unrepaired defects in the AF are associated with postoperative reherniation and high IVD degeneration prevalence, current surgical strategies are limited to symptomatic treatment of pain and disregard the structural integrity of the AF. For all these reasons, this study is focused on i) designing polycaprolactone (PCL) electrospun implants that mimic the multi-lamellar fibrous structure of the native tissue and ii) assessing their ability to properly close and repair an AF defect in a sheep in vivo model. Oriented PCL mats were produced by electrospinning with average fiber diameters of 1.3µm and a tensile modulus (55±1MPa) matching the one of a native human AF lamella (∼47MPa). In vitro experiments demonstrated a spontaneous colonization of PCL mats by human and ovine AF cells. In vivo study was carried out on 6 sheep in which 5 lumbar discs were exposed using a left retroperitoneal approach. Defects (2×5mm, 2mm depth) were created in the outer annulus, with randomized distribution of conditions including 10-layer oriented or non-oriented mats, untreated and healthy groups. X-ray and MRI examinations were performed every month until explantations at 1, 3 and 6 months, followed by immuno-histological analysis. Data showed no dislocation of the implants, cell infiltration between the PCL mats and within the mats, and a continuous type I collagen tissue formation between the implants and the surrounding AF tissue. These results highlight that multi-layer PCL electrospun mat is a promising biomaterial for AF repair.