header advert
Results 1 - 30 of 30
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 10 - 10
23 Feb 2023
Hardwick-Morris M Twiggs J Miles B Jones E Bruce WJM Walter WL
Full Access

Dislocation is one of the most common complications in total hip arthroplasty (THA) and is primarily driven by bony or prosthetic impingement. The aim of this study was two-fold. First, to develop a simulation that incorporates the functional position of the femur and pelvis and instantaneously determines range of motion (ROM) limits. Second, to assess the number of patients for whom their functional bony alignment escalates impingement risk.

468 patients underwent a preoperative THA planning protocol that included functional x-rays and a lower limb CT scan. The CT scan was segmented and landmarked, and the x-rays were measured for pelvic tilt, femoral rotation, and preoperative leg length discrepancy (LLD). All patients received 3D templating with the same implant combination (Depuy; Corail/Pinnacle). Implants were positioned according to standardised criteria.

Each patient was simulated in a novel ROM simulation that instantaneously calculates bony and prosthetic impingement limits in functional movements. Simulated motions included flexion and standing-external rotation (ER). Each patient's ROM was simulated with their bones oriented in both functional and neutral positions.

13% patients suffered a ROM impingement for functional but not neutral extension-ER. As a result, 48% patients who failed the functional-ER simulation would not be detected without consideration of the functional bony alignment. 16% patients suffered a ROM impingement for functional but not neutral flexion. As a result, 65% patients who failed the flexion simulation would not be detected without consideration of the functional bony alignment.

We have developed a ROM simulation for use with preoperative planning for THA surgery that can solve bony and prosthetic impingement limits instantaneously. The advantage of our ROM simulation over previous simulations is instantaneous impingement detection, not requiring implant geometries to be analysed prior to use, and addressing the functional position of both the femur and pelvis.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 11 - 11
23 Feb 2023
Hardwick-Morris M Twiggs J Miles B Walter WL
Full Access

Iliopsoas tendonitis occurs in up to 30% of patients after hip resurfacing arthroplasty (HRA) and is a common reason for revision. The primary purpose of this study was to validate our novel computational model for quantifying iliopsoas impingement in HRA patients using a case-controlled investigation. Secondary purpose was to compare these results with previously measured THA patients.

We conducted a retrospective search in an experienced surgeon's database for HRA patients with iliopsoas tendonitis, confirmed via the active hip flexion test in supine, and control patients without iliopsoas tendonitis, resulting in two cohorts of 12 patients. The CT scans were segmented, landmarked, and used to simulate the iliopsoas impingement in supine and standing pelvic positions. Three discrete impingement values were output for each pelvic position, and the mean and maximum of these values were reported. Cup prominence was measured using a novel, nearest-neighbour algorithm.

The mean cup prominence for the symptomatic cohort was 10.7mm and 5.1mm for the asymptomatic cohort (p << 0.01). The average standing mean impingement for the symptomatic cohort was 0.1mm and 0.0mm for the asymptomatic cohort (p << 0.01). The average standing maximum impingement for the symptomatic cohort was 0.2mm and 0.0mm for the asymptomatic cohort (p << 0.01). Impingement significantly predicted the probability of pain in logistic regression models and the simulation had a sensitivity of 92%, specificity of 91%, and an AUC ROC curve of 0.95.

Using a case-controlled investigation, we demonstrated that our novel simulation could detect iliopsoas impingement and differentiate between the symptomatic and asymptomatic cohorts. Interestingly, the HRA patients demonstrated less impingement than the THA patients, despite greater cup prominence. In conclusion, this tool has the potential to be used preoperatively, to guide decisions about optimal cup placement, and postoperatively, to assist in the diagnosis of iliopsoas tendonitis.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 12 - 12
23 Feb 2023
Hardwick-Morris M Twiggs J Miles B Balakumar J Walter WL
Full Access

Iliopsoas impingement occurs in between 5-30% of patients after hip arthroplasty and has been thought to only be caused by an oversized cup, cup malpositioning, or the depth of the psoas valley. However, no study has associated the relationship between preoperative measurements with the risk of impingement. This study sought to assess impingement between the iliopsoas and acetabular cup using a novel validated model to determine the risk factors for iliopsoas impingement.

413 patients received lower limb CT scans and lateral x-rays that were segmented, landmarked, and measured using a validated preoperative planning protocol. Implants were positioned according to the preference of ten experienced surgeons. The segmented bones were transformed to the standing reference frame and simulated with a novel computational model that detects impingement between the iliopsoas and acetabular cup. Definitions of patients at-risk and not at-risk of impingement were defined from a previous validation study of the simulation. At-risk patients were propensity score matched to not at-risk patients.

21% of patients were assessed as being at-risk of iliopsoas impingement. Significant differences between at-risk patients and not at-risk patients were observed in standing pelvic tilt (p << 0.01), standing femoral internal rotation (p << 0.01), medio-lateral centre-of-rotation (COR) change (p << 0.01), supine cup anteversion (p << 0.01), pre- to postoperative cup offset change (p << 0.001), postoperative gross offset (p = 0.009), and supero-inferior COR change (p = 0.02).

Impingement between the iliopsoas and acetabular cup is under-studied and may be more common than is published in the literature. Previously it has been thought to only be related to cup size or positioning. However, we have observed significant differences between at-risk and not at-risk patients in additional measurements. This indicates that its occurrence is more complex than simply being related to cup position.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 9 - 9
23 Feb 2023
Hardwick-Morris M Twiggs J Miles B Jones E Bruce WJM Walter WL
Full Access

In 2021, Vigdorchik et al. published a large multicentre study validating their simple Hip-Spine Classification for determining patient-specific acetabular component positioning in total hip arthroplasty (THA). The purpose of our study was to apply this Hip-Spine Classification to a sample of Australian patients undergoing THA surgery to determine the local acetabular component positioning requirements. Additionally, we propose a modified algorithm for adjusting cup anteversion requirements.

790 patients who underwent THA surgery between January 2021 and June 2022 were assessed for anterior pelvic plane tilt (APPt) and sacral slope (SS) in standing and relaxed seated positions and categorized according to their spinal stiffness and flatback deformity. Spinal stiffness was measured using pelvic mobility (PM); the ΔSS between standing and relaxed seated. Flatback deformity was defined by APPt <−13° in standing. As in Vigdorchik et al., PM of <10° was considered a stiff spine. For our algorithm, PM of <20° indicated the need for increased cup anteversion. Using this approach, patient-specific cup anteversion is increased by 1° for every degree the patient's PM is <20°.

According to the Vigdorchik simple Hip-Spine classification groups, we found: 73% Group 1A, 19% Group 1B, 5% Group 2A, and 3% Group 2B. Therefore, under this classification, 27% of Australian THA patients would have an elevated risk of dislocation due to spinal deformity and/or stiffness. Under our modified definition, 52% patients would require increased cup anteversion to address spinal stiffness.

The Hip-Spine Classification is a simple algorithm that has been shown to indicate to surgeons when adjustments to acetabular cup anteversion are required to account for spinal stiffness or flatback deformity. We investigated this algorithm in an Australian population of patients undergoing THA and propose a modified approach: increasing cup anteversion by 1° for every degree the patient's PM is <20°.


Bone & Joint Open
Vol. 4, Issue 1 | Pages 3 - 12
4 Jan 2023
Hardwick-Morris M Twiggs J Miles B Al-Dirini RMA Taylor M Balakumar J Walter WL

Aims

Iliopsoas impingement occurs in 4% to 30% of patients after undergoing total hip arthroplasty (THA). Despite a relatively high incidence, there are few attempts at modelling impingement between the iliopsoas and acetabular component, and no attempts at modelling this in a representative cohort of subjects. The purpose of this study was to develop a novel computational model for quantifying the impingement between the iliopsoas and acetabular component and validate its utility in a case-controlled investigation.

Methods

This was a retrospective cohort study of patients who underwent THA surgery that included 23 symptomatic patients diagnosed with iliopsoas tendonitis, and 23 patients not diagnosed with iliopsoas tendonitis. All patients received postoperative CT imaging, postoperative standing radiography, and had minimum six months’ follow-up. 3D models of each patient’s prosthetic and bony anatomy were generated, landmarked, and simulated in a novel iliopsoas impingement detection model in supine and standing pelvic positions. Logistic regression models were implemented to determine if the probability of pain could be significantly predicted. Receiver operating characteristic curves were generated to determine the model’s sensitivity, specificity, and area under the curve (AUC).


The Bone & Joint Journal
Vol. 101-B, Issue 1_Supple_A | Pages 59 - 65
1 Jan 2019
Katchky AM Jones CW Walter WL Shimmin AJ

Aims

Between 15% and 20% of patients remain dissatisfied following total knee arthroplasty (TKA). The SAIPH knee system (MatOrtho, Surrey, United Kingdom) is a medial ball and socket TKA that has been designed to replicate native knee kinematics in order to maximize the range of movement, stability, and function. This system is being progressively introduced in a stepwise fashion, with this study reporting the mid-term clinical and radiological outcomes.

Patients and Methods

A retrospective review was undertaken of the first 100 consecutive patients with five-year follow-up following SAIPH TKA performed by the senior authors. The data that were collected included the demographics of the patients, clinical findings, the rate of intraoperative ligamentous release, patient-reported outcome measures (PROMS), radiological assessment, complications, and all-cause revision. Revision data were cross-checked with a national registry.


Bone & Joint Research
Vol. 5, Issue 9 | Pages 370 - 378
1 Sep 2016
Munir S Oliver RA Zicat B Walter WL Walter WK Walsh WR

Objectives

This study aimed to characterise and qualitatively grade the severity of the corrosion particles released into the hip joint following taper corrosion.

Methods

The 26 cases examined were CoC/ABG Modular (n = 13) and ASR/SROM (n = 13). Blood serum metal ion levels were collected before and after revision surgery. The haematoxylin and eosin tissue sections were graded on the presence of fibrin exudates, necrosis, inflammatory cells and corrosion products. The corrosion products were identified based on visible observation and graded on abundance. Two independent observers blinded to the clinical patient findings scored all cases. Elemental analysis was performed on corrosion products within tissue sections. X-Ray diffraction was used to identify crystalline structures present in taper debris.


The Bone & Joint Journal
Vol. 96-B, Issue 11 | Pages 1449 - 1454
1 Nov 2014
Imbuldeniya AM Walter WL Zicat BA Walter WK

We describe the clinical and radiological results of cementless primary total hip replacement (THR) in 25 patients (18 women and seven men; 30 THRs) with severe developmental dysplasia of the hip (DDH). Their mean age at surgery was 47 years (23 to 89). In all, 21 hips had Crowe type III dysplasia and nine had Crowe type IV. Cementless acetabular components with standard polyethylene liners were introduced as close to the level of the true acetabulum as possible. The modular cementless S-ROM femoral component was used with a low resection of the femoral neck.

A total of 21 patients (25 THRs) were available for review at a mean follow-up of 18.7 years (15.8 to 21.8). The mean modified Harris hip score improved from 46 points pre-operatively to 90 at final follow up (p < 0.001).

A total of 15 patients (17 THRs; 57%) underwent revision of the acetabular component at a mean of 14.6 years (7 to 20.8), all for osteolysis. Two patients (two THRs) had symptomatic loosening. No patient underwent femoral revision. Survival with revision of either component for any indication was 81% at 15 years (95% CI 60.1 to 92.3), with 21 patients at risk.

This technique may reduce the need for femoral osteotomy in severe DDH, while providing a good long-term functional result.

Cite this article: Bone Joint J 2014;96-B:1449–54.


The Bone & Joint Journal
Vol. 96-B, Issue 6 | Pages 730 - 736
1 Jun 2014
Imbuldeniya AM Walter WK Zicat BA Walter WL

We report on 397 consecutive revision total hip replacements in 371 patients with a mean clinical and radiological follow-up of 12.9 years (10 to 17.7). The mean age at surgery was 69 years (37 to 93). A total of 28 patients (8%) underwent further revision, including 16 (4%) femoral components. In all 223 patients (56%, 233 hips) died without further revision and 20 patients (5%, 20 hips) were lost to follow-up. Of the remaining patients, 209 (221 hips) were available for clinical assessment and 194 (205 hips) for radiological review at mean follow-up of 12.9 years (10 to 17.7).

The mean Harris Hip Score improved from 58.7 (11 to 92) points to 80.7 (21 to 100) (p <  0.001) and the mean Merle d’Aubigné and Postel hip scores at final follow-up were 4.9 (2 to 6), 4.5 (2 to 6) and 4.3 (2 to 6), respectively for pain, mobility and function. Radiographs showed no lucencies around 186 (90.7%) femoral stems with stable bony ingrowth seen in 199 stems (97%). The survival of the S-ROM femoral stem at 15 years with revision for any reason as the endpoint was 90.5% (95% confidence interval (CI) 85.7 to 93.8) and with revision for aseptic loosening as the endpoint 99.3% (95% CI 97.2 to 99.8).

We have shown excellent long-term survivorship and good clinical outcome of a cementless hydroxyapatite proximally-coated modular femoral stem in revision hip surgery.

Cite this article: Bone Joint J 2014;96-B:730–6.


The Bone & Joint Journal
Vol. 96-B, Issue 2 | Pages 181 - 187
1 Feb 2014
Owen DH Russell NC Smith PN Walter WL

Squeaking arising from a ceramic-on-ceramic (CoC) total hip replacement (THR) may cause patient concern and in some cases causes patients to seek revision surgery. We performed a meta-analysis to determine the incidence of squeaking and the incidence of revision surgery for squeaking. A total of 43 studies including 16 828 CoC THR that reported squeaking, or revision for squeaking, were entered into the analysis. The incidence of squeaking was 4.2% and the incidence of revision for squeaking was 0.2%. The incidence of squeaking in patients receiving the Accolade femoral stem was 8.3%, and the incidence of revision for squeaking in these patients was 1.3%.

Cite this article: Bone Joint J 2014;96-B:181–7.


The Bone & Joint Journal
Vol. 95-B, Issue 12 | Pages 1603 - 1609
1 Dec 2013
Chana R Facek M Tilley S Walter WK Zicat B Walter WL

We report the clinical and radiological outcomes of a series of contemporary cementless ceramic-on-ceramic total hip replacements (THRs) at ten years in patients aged ≤ 55 years of age. Pre- and post-operative activity levels are described. A total of 120 consecutive ceramic cementless THRs were performed at a single centre in 110 patients from 1997 to 1999. The mean age of the patients at operation was 45 years (20 to 55). At ten years, four patients had died and six were lost to follow-up, comprising ten hips. The mean post-operative Harris hip score was 94.7 (55 to 100). Radiological analysis was undertaken in 90 available THRs of the surviving 106 hips at final review: all had evidence of stable bony ingrowth, with no cases of osteolysis. Wear was undetectable. There were four revisions. The survival for both components with revision for any cause as an endpoint was 96.5% (95% confidence interval 94.5 to 98.7). The mean modified University of California, Los Angeles activity level rose from a mean of 6.4 (4 to 10) pre-operatively to 9.0 (6 to 10) at the ten-year post-operative period.

Alumina ceramic-on-ceramic bearings in cementless primary THR in this series have resulted in good clinical and radiological outcomes with undetectable rates of wear and excellent function in the demanding younger patient group at ten years.

Cite this article: Bone Joint J 2013;95-B:1603–9.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 84 - 84
1 Mar 2013
Jenabzadeh R Munir S Burke J Walter WK Zicat B Walter WL
Full Access

Introduction

The Delta Motion device (developed by Finsbury Orthopaedics, Leatherhead, United Kingdom, now manufactured by DePuy, Leeds, United Kingdom) is a pre-assembled factory fitted cup. It has been introduced to overcome some of the concerns relating to intra-operative assembly with improper seating of the liner and chipping. This device has a thinner shell and liner in comparison with other cups, allowing the use of larger sized heads which should help reduce the risk of impingement and dislocation. A drawback of the pre-assembled design is the inability to use supplementary screws to achieve stability and the difficulty in obtaining primary stability compared with a thin titanium shell. To date we are not aware of any publications reviewing the outcomes of these devices.

Methods

206 DeltaMotion cups were implanted in 195 patients, between Dec 2008 to Dec 2009 by the three senior authors. All the hips had the same stem (Osteonics) and a ceramic head was used. Data was prospectively collected and we reflect on our two year results.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 127 - 127
1 Mar 2013
Cross MB Esposito C Sokolova A Jenabzadeh R Molloy D Munir S Zicat B Walter WK Walter WL
Full Access

Introduction

Modularity is being increasingly used throughout the world for both primary and revision total hip arthroplasty. Recently there have been concerns of increased corrosion and fretting at the modular junctions. In the SROM® modular hip system, two modular junctions are the head-neck taper junction and the stem-sleeve taper junction. The aim of this study was to investigate corrosion at these junctions with the use of different bearing materials.

Methods

Between 1994 and 2012, fourty-two patients were revised with SROM® stems. Reasons for revision included aseptic loosening of the cup or stem (11), periprosthetic fracture (2), osteolysis (8), dislocation (13) and other reasons (7). One was revised for stem breakage, and this was excluded from this study. We examined 41 retrieved S-ROM® comprised of 6 metal-on-metal (MOM), 12 metal-on-polyethylene (MOP), 7 ceramic-on-polyethylene (COP) and 16 ceramic-on-ceramic (COC). The orientation for all components was marked at the time of revision surgery. Both the proximal sleeve/stem and the femoral head-neck modular junctions were examined under 10X magnification, and graded by two independent observers. The head tapers were divided into 4 regions, and graded using a previously published 3 point scoring system for fretting and corrosion damage (Goldberg et al, Kop et al), for a total corrosion damage score of 12. The SROM stems were also assessed at the sleeve/stem taper junction. Each stem was divided into 8 quadrants, and graded for corrosion and fretting using the same system as the taper. In addition to severity, we also quantified area of corrosion damage of the stem at the sleeve-stem junction from 0–3, which was multiplied by the severity of damage, to give a score out of 9 for each quadrant (maximum total score of 72 for the stem). The bearing type was unknown to the investigators, so the grading was done in a blinded fashion. Corrosion scores were divided by time to account for differences in time to revision.


The Bone & Joint Journal
Vol. 95-B, Issue 3 | Pages 333 - 338
1 Mar 2013
Jack CM Molloy DO Walter WL Zicat BA Walter WK

The practice of removing a well-fixed cementless femoral component is associated with high morbidity. Ceramic bearing couples are low wearing and their use minimises the risk of subsequent further revision due to the production of wear debris. A total of 165 revision hip replacements were performed, in which a polyethylene-lined acetabular component was revised to a new acetabular component with a ceramic liner, while retaining the well-fixed femoral component. A titanium sleeve was placed over the used femoral trunnion, to which a ceramic head was added. There were 100 alumina and 65 Delta bearing couples inserted.

The mean Harris hip score improved significantly from 71.3 (9.0 to 100.0) pre-operatively to 91.0 (41.0 to 100.0) at a mean follow up of 4.8 years (2.1 to 12.5) (p < 0.001). No patients reported squeaking of the hip.

There were two fractures of the ceramic head, both in alumina bearings. No liners were seen to fracture. No fractures were observed in components made of Delta ceramic. At 8.3 years post-operatively the survival with any cause of failure as the endpoint was 96.6% (95% confidence interval (CI) 85.7 to 99.3) for the acetabular component and 94.0% (95% CI 82.1 to 98.4) for the femoral component.

The technique of revising the acetabular component in the presence of a well-fixed femoral component with a ceramic head placed on a titanium sleeve over the used trunnion is a useful adjunct in revision hip practice. The use of Delta ceramic is recommended.

Cite this article: Bone Joint J 2013;95-B:333–8.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 59 - 59
1 Mar 2013
Esposito C Roques A Tuke M Zicat B Walter WK Walsh W Walter WL
Full Access

Introduction

Edge loading commonly occurs in all bearings in hip arthroplasty. Edge loading wear can occur in these bearings when the biomechanical loading axis reaches the edge and the femoral head loads the edge of the cup producing wear damage on both the head and cup edge. When the biomechanical loading axis passes through the polished articulating surface of the acetabular component and does not reach the edge, the center of the head and the center of the cup are concentric. The resulting wear known as concentric wear is low in metal-on-metal (MOM) bearings, and is negligible in ceramic-on-ceramic (COC) bearings. Edge loading is well defined in COC hip bearings. However, edge loading is difficult to identify in MOM bearings, since the metal bearing surfaces do not show wear patterns macroscopically. The aims of this study are to compare edge loading wear rates in COC and MOM bearings, and to relate edge loading to clinical complications.

Materials and Methods

Twenty-nine failed large diameter metal-on-metal hip bearings (17 total hips, 12 resurfacings) were compared to 54 failed alumina-on-alumina bearings collected from 1998 to 2011. Most COC bearings were revised for aseptic loosening or periprosthetic bone fracture, while most MOM bearings were revised for pain, soft tissue reactions or impingement. The median time to revision was 3.2 years for the metal hip bearings and 3.5 years for alumina hip bearings. The surface topography of the femoral heads was measured using a RedLux AHP (Artificial Hip Profiler, RedLux Ltd, Southampton, UK).


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 60 - 60
1 Mar 2013
Esposito C Oliver R Campbell P Walter WK Walter WL Walsh W
Full Access

In patients with conventional metal-on-Polyethylene (MoP) hip replacements, osteolysis can occur in response to wear debris. During revision hip surgery, surgeons usually remove the source of osteolysis (polyethylene) but cannot always remove all of the inflammatory granulomatous tissues in the joint. We used a human/rat xenograft model to evaluate the effects of polyethylene granuloma tissues on bone healing. Human osteoarthritic and periprosthetic tissues collected during primary and revision hip arthroplasty surgeries were transplanted into the distal femora of athymic (nude) rats. The tissues were assessed before and after implantation and the bone response to the tissues was evaluated after 1 week and 3 weeks using micro-computed tomography, histology, and immunohistochemistry. After 3 weeks, the majority (70%) of defects filled with osteoarthritic tissues healed, while only 21% of defects with polyethylene granuloma tissues healed. Polyethylene granuloma tissues in trabecular bone defects inhibited bone healing. Surgeons should remove polyethylene granuloma tissues during revision surgery when possible, since these tissues may slow bone healing around a newly implanted prosthesis. This model provides a method for delivering clinically relevant sized particles into an in vivo model for investigation.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 170 - 170
1 Mar 2013
Esposito C Roques A Tuke M Walsh WK Walter WL
Full Access

Introduction

Two types of ceramic materials currently used in total hip replacements are third generation hot isostatic pressed (HIPed) alumina ceramic (commercially known as BIOLOX®forte, CeramTec) and fourth generation alumina matrix composite ceramic consisting of 75% alumina, 24% zirconia, and 1% mixed oxides (BIOLOX®delta, CeramTec). Delta ceramic hip components are being used worldwide, but very few studies have analyzed retrieved delta bearings. The aim of this study is to compare edge loading ‘stripe’ wear on retrieved femoral heads from delta-on-delta, delta-on-forte and forte-on-forte ceramic bearings revised within 2 years in vivo.

Material and Methods

Ceramic bearings revised at one center from 1998 to 2010 were collected (61 bearings). Eleven delta heads revised between 1–33 months were compared to 24 forte femoral heads with less than 24 months in vivo (Figure 1). The surface topography of the femoral heads was measured using a RedLux AHP (Artificial Hip Profiler, RedLux Ltd, Southampton, UK). Three representative samples were examined with a FEI Quanta 200 Scanning Electron Microscope (SEM).


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 7 | Pages 901 - 907
1 Jul 2012
Esposito CI Walter WL Roques A Tuke MA Zicat BA Walsh WR Walter WK

We analysed 54 alumina ceramic-on-ceramic bearings from total hip replacements retrieved at one centre after a mean duration of 3.5 years (0.2 to 10.6) in situ. These implants were obtained from 54 patients (16 men and 38 women) with a mean age of 67 years (33 to 88) who underwent revision for a variety of reasons. Posterior edge loading was found in the majority of these retrievals (32 out of 54). Anterosuperior edge loading occurred less often but produced a higher rate of wear. Stripe wear on the femoral heads had a median volumetric wear rate of 0.2 mm3/year (0 to 7.2). The wear volume on the femoral heads corresponded to the width of edge wear on the matching liner. Anteversion of the acetabular component was found to be a more important determinant than inclination for wear in ceramic bearings. Posterior edge loading may be considered to be a normal occurrence in ceramic-on-ceramic bearings, with minimal clinical consequences. Edge loading should be defined as either anterosuperior or posterior, as each edge loading mechanism may result in different clinical implications.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 6 | Pages 735 - 745
1 Jun 2012
Jeffers JRT Walter WL

This systematic review of the literature summarises the clinical experience with ceramic-on-ceramic hip bearings over the past 40 years and discusses the concerns that exist in relation to the bearing combination. Loosening, fracture, liner chipping on insertion, liner canting and dissociation, edge-loading and squeaking have all been reported, and the relationship between these issues and implant design and surgical technique is investigated. New design concepts are introduced and analysed with respect to previous clinical experience.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 2 | Pages 281 - 286
1 Feb 2012
Chana R Esposito C Campbell PA Walter WK Walter WL

We report a case of a male patient presenting with bilateral painful but apparently well-positioned and -fixed large-diameter metal-on-metal hip replacements four years post-operatively. Multiple imaging modes revealed a thick-walled, cystic expansile mass in communication with the hip joint (a pseudotumour). Implant retrieval analysis and tissue culture eliminated high bearing wear or infection as causes for the soft-tissue reaction, but noted marked corrosion of the modular neck taper adaptor and corrosion products in the tissues. Therefore, we believe corrosion products from the taper caused by mismatch of the implant components led to pseudotumour formation requiring revision.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 12 | Pages 1597 - 1601
1 Dec 2011
Walter WL Kurtz SM Esposito C Hozack W Holley KG Garino JP Tuke MA

This multicentre study analysed 12 alumina ceramic-on-ceramic components retrieved from squeaking total hip replacements after a mean of 23 months in situ (11 to 61). The rates and patterns of wear seen in these squeaking hips were compared with those seen in matched controls using retrieval data from 33 ‘silent’ hip replacements with similar ceramic bearings. All 12 bearings showed evidence characteristic of edge-loading wear. The median rate of volumetric wear was 3.4 mm3/year for the acetabular component, 2.9 mm3/year on the femoral heads and 6.3 mm3/year for head and insert combined. This was up to 45 times greater than that of previously reported silent ceramic-on-ceramic retrievals. The rate of wear seen in ceramic components revised for squeaking hips appears to be much greater than in that seen in retrievals from ‘silent’ hips.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 430 - 430
1 Nov 2011
Walter WL
Full Access

Ceramic on ceramic articulations had been used since 1970s but with high failure rate.

More recent third generation alumina ceramic had improved results due to better material properties to resist wear and fracture and better methods of fixation with metal back acetabular components. A new clinical problem of squeaking has emerged in the last decade and is now a relatively common occurrence in ceramic on ceramic total hip arthroplasty, with a reported incidence from less than 1% to 20% depending on the definition of the noise. We report experience with over 3000 ceramic-on-ceramic hips including the 10 year minimum follow-up of the first 301 cases.

Methods: Between June 1997 and Feb 1999, 301 consecutive primary cementless hip arthroplasties were performed on 283 patients under the care of the two senior authors. The mean age of the patients was 58.

All patients are asked on follow-up as part of a questionnaire: Has your hip ever made a squeaking noise? To date of the more than 3000 ceramic on ceramic hips that we follow, 74 hips (71 patients) responded yes to this question. Patient demographic and outcome data were analysed in all squeaking hips and compared with all primary ceramic on ceramic hips operated on at our unit.

Results: Of the first 301 cases there have been 9 revision surgeries in 8 hips as follows.

Two acetabular components revised for psoas tendonitis, one of these subsequently had both components revised for acetabular osteolysis with femoral revision to improve anteversion.

There were six other femoral component revisions: four for periprosthetic femoral fractures, one for aseptic loosening and one for transient sciatic nerve palsy. There has been one squeaking hip in this group not requiring revision due to the mild and intermittent nature of the noise. All complications occurred within the first 3 years, no further complication has arisen since.

When comparing the 74 squeaking hips to the entire cohort of primary hips we found that taller, heavier and younger patients are significantly more likely to have hips that squeak.

Squeaking hips have a significantly higher range of post-operative movement than silent hips.

Squeaking hips have a significantly higher Harris hip score. There was no difference in the satisfaction scores between squeaking and silent hips.

Conclusion: In summary, we have reported the large series of third generation alumina ceramic on ceramic articulation with 10 year results, and have demonstrated that it can produce excellent survivorship with good clinical and radiographic outcome. We believe that this result had provided very encouraging evidence to support the use of third generation ceramics as articulation for primary hip arthroplasty, especially in young and active patients.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 4 | Pages 439 - 442
1 Apr 2011
Sexton SA Yeung E Jackson MP Rajaratnam S Martell JM Walter WL Zicat BA Walter WK

We investigated factors that were thought to be associated with an increased incidence of squeaking of ceramic-on-ceramic total hip replacements. Between June 1997 and December 2008 the three senior authors implanted 2406 primary total hip replacements with a ceramic-on-ceramic bearing surface. The mean follow-up was 10.6 years. The diagnosis was primary osteoarthritis in each case, and no patient had undergone previous surgery to the hip. We identified 74 squeaking hips (73 patients) giving an incidence of 3.1% at a mean follow-up of 9.5 years (4.1 to 13.3).

Taller, heavier and younger patients were significantly more likely to have hips that squeaked. Squeaking hips had a significantly higher range of post-operative internal (p = 0.001) and external rotation (p = 0.003) compared with silent hips. Patients with squeaking hips had significantly higher activity levels (p = 0.009). A squeaking hip was not associated with a significant difference in patient satisfaction (p = 0.24) or Harris hip score (p = 0.34). Four implant position factors enabled good prediction of squeaking. These were high acetabular component inclination, high femoral offset, lateralisation of the hip centre and either high or low acetabular component anteversion.

This is the largest study to date to examine patient factors and implant position factors that predispose to squeaking of a ceramic-on-ceramic hip. The results suggest that factors which increase the mechanical forces across the hip joint and factors which increase the risk of neck-to-rim impingement, and therefore edge-loading, are those that predispose to squeaking.


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 4 | Pages 469 - 476
1 Apr 2010
Shimmin AJ Walter WL Esposito C

The survivorship of contemporary resurfacing arthroplasty of the hip using metal-on-metal bearings is better than that of first generation designs, but short-term failures still occur. The most common reasons for failure are fracture of the femoral neck, loosening of the component, osteonecrosis of the femoral head, reaction to metal debris and malpositioning of the component. In 2008 the Australian National Joint Registry reported an inverse relationship between the size of the head component and the risk of revision in resurfacing hip arthroplasty. Hips with a femoral component size of ≤ 44 mm have a fivefold increased risk of revision than those with femoral components of ≥ 55 mm irrespective of gender. We have reviewed the literature to explore this observation and to identify possible reasons including the design of the implant, loading of the femoral neck, the orientation of the component, the production of wear debris and the effects of metal ions, penetration of cement and vascularity of the femoral head. Our conclusion is that although multifactorial, the most important contributors to failure in resurfacing arthroplasty of the hip are likely to be the design and geometry of the component and the orientation of the acetabular component.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 168 - 168
1 Mar 2010
Walter WL Waters TS Gillies RM Donohoo SM Hozack WJ Kurtz SM
Full Access

Squeaking in hip arthroplasty is now well-documented but hitherto poorly understood. In this paper, we report data progressively accumulated from a series of studies undertaken by our group to investigate the mechanisms of noise production associated with ceramic-on-ceramic bearings. We reviewed demographic and radiographic data comparing squeaking with silent hips. Edge loading of the acetabular components was investigated on retrieved bearings and with finite element analysis. The squeaking sound itself was further investigated through acoustic analysis. Squeaking occurs in younger, heavier, and taller patients.

We found a higher incidence of acetabular component malposition in squeaking hips and edge loading appears to be a causative factor. Finite element analysis revealed a stiffness mismatch between the shell and liner which may allow the shell to oscillate producing an audible squeak. Acoustic and modal analysis show that squeaking is due to a forced vibration and that the natural frequencies of the ceramic components are above the audible range, suggesting that resonance occurs in the metallic, not the ceramic parts. This phenomenon is related to patient factors, surgical factors, and implant factors, which may produce sound by a combination of edge loading of the ceramic and forced vibration of the acetabular shell and/or the femoral stem.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 104 - 104
1 Mar 2010
Walter WL Gillies M Donohoo S Sexton SA Hozack WJ Ranawat AS
Full Access

Squeaking in ceramic on ceramic bearing total hip arthroplasty is well documented but its aetiology is poorly understood. In this study we have undertaken an acoustic analysis of the squeaking sound recorded from 31 ceramic on ceramic bearing hips. The frequencies of these sounds were compared with in vitro acoustic analysis of the component parts of the total hip implant. Analysis of the sounds produced by squeaking hip replacements and comparison of the frequencies of these sounds with the natural frequency of the component parts of the hip replacements indicates that the squeaking sound is due to a friction driven forced vibration resulting in resonance of one or both of the metal components of the implant. Finite element analysis of edge loading of the prostheses shows that there is a stiffness incompatibility between the acetabular shell and the liner.

The shell tends to deform, uncoupling the shell-liner taper system. As a result the liner tends to tilt out of the acetabular shell and slide against the acetabular shell adjacent to the applied load. The amount of sliding varied from 4–40μm. In vitro acoustic and finite element analysis of the component parts of a total hip replacement compared with in vivo acoustic analysis of squeaking hips indicate that either the acetabular shell or the femoral stem can act as an “oscillator’ in a forced vibration system and thus emit a squeak.

Introduction: Squeaking has long been recognized as a complication in hip arthroplasty. It was first reported in the Judet acrylic hemiarthroplasty.1 It was the squeak of a Judet prosthesis that led John Charnley to investigate friction and lubrication of normal and artificial joints which ultimately led to the concept of low friction arthroplasty. Ceramic on ceramic bearings were pioneered by Boutin in France during the 1970’s, but experienced unacceptably high fracture rates. Charnley demonstrated in vitro squeaking when he tested one of Boutin’s ceramic-on-ceramic bearings in his pendulum friction comparator.2 Squeaking has also been reported in other hard on hard bearings, and can also occur after polyethylene bearing surface failure resulting in articulation between metal on metal or ceramic on metal surfaces.3–6 Recently, squeaking has been increasingly reported in modern ceramic-on-ceramic bearings in hip arthroplasty. However, although well-documented, the aetiology of squeaking in ceramic on ceramic bearings is still poorly understood. The incidence ranges from under 1% to 10%.7–10 It has been reported in mismatched ceramic couples,11and after ceramic liner fracture.12,13 An increased risk of squeaking has been demonstrated with acetabular component malposition, as well as in younger, heavier and taller patients.9 However, it may also occur in properly matched ceramic bearings with ideal acetabular component position and in the absence of neck to rim impingement.7–9 In rare cases, the squeak is not tolerated by the patient and has prompted a revision.

Under ideal conditions hard-on-hard bearings are assumed to be operating under conditions of fluid film lubrication with very low friction.14,15 However, if fluid film lubrication breaks down leading to dry sliding contact there will be a dramatic increase in friction. If this increased friction provides more energy to the system than it can dissipate, instabilities may develop in the form of friction induced vibrations and sound radiation16. Friction induced vibrations are a special case of forced vibration, where the frequency of the resulting vibration is determined by the natural frequency of the component parts. Running a moistened finger around the rim of a wine glass is an example of this. [Appendix].

The hypothesis of this study is that the squeaking sound that occurs in ceramic on ceramic hip replacement is the result of a forced vibration. This forced vibration can be broken down into a driving force and a resultant dynamic response17. The driving force is a frictional driving force and occurs when there is a loss of fluid film lubrication resulting in a high friction force14,15,18. The dynamic response is a vibration of a part of the device (the oscillator) at a frequency that is influenced by the natural frequency of the part16. By analyzing the frequencies of the sound produced by squeaking hip replacements and comparing them to the natural frequency of the component parts of a hip replacement this study aims to determine which part produces the sound.

Materials and methods: In vitro determination of the natural frequencies of implant components Modal analysis has suggested that resonance of the ceramic components would occur only at frequencies above the human audible range and that resonance of the metal parts would occur at frequencies within the human audible range. Furthermore, that resonance of the combined ceramic insert and titanium shell would not be within the human audible range. To test this hypothesis we performed a simple acoustic analysis. The natural frequency of hip replacement components was determined experimentally using an impulse-excitation method (Grindo-sonic). Components were placed on a soft foam mat in a quiet environment and struck with a wooden mallet. The sound emitted from the component was recorded on a personal computer with an external microphone with a frequency response which ranges from 50Hz to 18,000Hz (Beyerdynamic MCE87, Heilbronn, Ger-many). The computer has an integrated sound card with a frequency response from 20Hz to 24kHz (SoundMAX integrated digital audio chip, Analogue Devices Inc, Norwood, M.A.) and we used a codec with a frequency response from 20Hz to 20kHz (Audio Codec ’97, Intel, Santa Clara, CA). Sound files were captured as 16 bit mono files at a sample rate of 48000Hz using acoustic analysis software (Adobe Audition 1.5, Adobe Systems Incorporated, San Jose, California, USA). We performed fast Fourier transform (FFT) of the sound using FFT size 1024 with a Blackmann-Harris window to detect the frequency components of the emitted sound. (Fast Fourier transform is an accepted and efficient algorithm which enables construction of a frequency spectrum of digitized sound).

We tested the following components: modular ceramic/titanium acetabular components, which included testing the titanium shell and the respective ceramic inserts both assembled according to the manufacturer’s instructions and unassembled; titanium femoral stems and ceramic femoral heads both assembled and unassembled. A range of sizes of each component was tested according to availability from our retrieval collection.

In vivo acoustic analysis: Sound recordings were collected from 31 patients. Nineteen recordings were made at our institution: 16 of these were video and audio recordings and 3 were audio only recordings. Video recording was with a digital video camera recorder (Sony DCR-DVD101E Sony Electronics, San Diego, CA, USA) with the same external microphone used in the in vitro analysis. For 3 patients who could not reproduce the sound in the office we lent them a digital sound recorder for them to take home and record the sound when it occurred (Sony ICD-MX20, Sony Electronics, San Diego, CA, USA). This device has a In vivo acoustic frequency range from 60Hz to 13,500Hz. The remainder of the recordings were video and audio recordings made by surgeons at three other institutions on digital video camera recorders.

Sound files were captured and analyzed by the same method used in the in vitro analysis. Each recording was previewed in the spectral view mode which allows easy visual identification of the squeak in the sound recording. In addition all sound recordings were played, listening for the squeak. Once a squeak was identified a fast Fourier transform (FFT) was performed. We used FFT size 1024 with a Blackmann-Harris window which allowed us to easily pick out the major frequency components. All prominent frequency components were recorded at the beginning of the squeak and at several time points during the squeak if there was any change. A range was recorded for the fundamental frequency component. We were able to determine the frequency range of the recording device used by observing the frequency range of the background noise on the recording. We found that if a squeak was audible on the recording we had no difficulty determining its frequency regardless of the quality of the device used to make the recording or the amount of background noise.

The mean age of the patients was 54 years (23 to 79 years), mean height was 171cm (152 to 186cm) and mean weight was 79kg (52 to 111kg). There were 17 female and 14 male patients. There were nineteen ABGII stem and ABGII cup combinations, 10 accolade stem and trident cup, 1 Exeter stem and trident cup and 1 Osteonics Securfit stem with an Osteonics cup. Ethics committee approval was obtained for this project from our institution and from the referring institutions and informed consent was gained from the patients.

Finite element analysis of edge loading: Edge-loading wear which may provide a mechanism for failure of fluid film lubrication and may therefore play a role in squeaking. To evaluate edge loading further we conducted finite-element analysis (FEA).9 Computed tomography (CT) scans of an intact pelvis were obtained from visual human data set (VHD, NLM, Bethesda, Maryland). Slices were taken at 1mm thick with no inter-slice distance through the entire pelvis. The CT files were then read into a contour extraction program and saved into an IGES file format which was imported into PATRAN (MSC Software, Los Angeles, CA) to develop the pelvic geometry. The pelvis was meshed with 10 noded modified tetrahedral elements. The model was reconstructed with a 54mm titanium alloy generic acetabular shell and a 28mm alumina ceramic liner. The acetabular shell and ceramic liner were meshed using 8 noded hexahedral elements. The shell-liner modular taper junction incorporated an 18° angle. The implant contact conditions (Lagrangian multiplier) allowed the liner and shell to slide with a friction coefficient of 0.9. Tied contact conditions were applied between the generic acetabular shell and the bone representing bone ongrowth. Bone material properties were extracted from the CT files by taking the Hounsfield value and the coordinates and mapping to the element in the model allowing us to calculate the Young’s modulus for each element 19. Material properties for the shell and liner were based on published values20 for titanium alloy and alumina ceramic


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 11 | Pages 1448 - 1453
1 Nov 2009
Sexton SA Walter WL Jackson MP De Steiger R Stanford T

Dislocation is a common reason for revision following total hip replacement. This study investigated the relationship between the bearing surface and the risk of revision due to dislocation. It was based on 110 239 primary total hip replacements with a diagnosis of osteoarthritis collected by the Australian Orthopaedic Association National Joint Replacement Registry between September 1999 and December 2007. A total of 862 (0.78%) were revised because of dislocation. Ceramic-on-ceramic bearing surfaces had a lower risk of requiring revision due to dislocation than did metal-on-polyethylene and ceramic-on-polyethylene surfaces, with a follow-up of up to seven years. However, ceramic-on-ceramic implants were more likely to have larger prosthetic heads and to have been implanted in younger patients. The size of the head of the femoral component and age are known to be independent predictors of dislocation. Therefore, the outcomes were stratified by the size of the head and age.

There is a significantly higher rate of revision for dislocation in ceramic-on-ceramic bearing surfaces than in metal-on-polyethylene implants when smaller sizes (≤ 28 mm) of the head were used in younger patients (< 65 years) (hazard ratio = 1.53, p = 0.041) and also with larger (> 28 mm) and in older patients (≥ 65 years) (hazard ratio = 1.73, p = 0.016).


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 10 | Pages 1296 - 1300
1 Oct 2009
Jackson MP Sexton SA Yeung E Walter WL Walter WK Zicat BA

The outcome of total hip replacement (THR) is potentially affected by the body mass index (BMI) of the patient. We studied the outcome of 2026 consecutive primary cementless THRs performed for osteoarthritis. The mean follow-up was 6.3 years (0 to 11.71) and no patient was lost to follow-up for survival analysis. The patients were divided into two groups according to their BMI as follows: non-obese (BMI < 30 kg/m2) and obese (BMI ≥ 30 kg/m2).

The obese patient undergoing surgery was found to be significantly younger (p < 0.001). The log-rank test for equality of survival showed no difference in the mid-term survival (p = 0.552) with an estimated survival at 11 years of 95.2% (95% CI 92.5 to 98.0) in the non-obese and 96.7% (95% CI 94.9 to 98.5) in the obese groups. The clinical and radiological outcome was determined in a case-matched study performed on 134 obese individuals closely matched with 134 non-obese controls. The non-obese group was found to have a significantly higher post-operative Harris hip score (p < 0.001) and an increased range of movement, but overall satisfaction with surgery was comparable with that of the obese patients. Radiological analysis of the acetabular and femoral components showed no significant differences with regard to radiolucent lines, osteolysis, ingrowth of the femoral component, the acetabular inclination angle or alignment of the femoral component. Our results suggest that the survival of cementless THR is not adversely affected by obesity. Obese patients can therefore be counselled that despite a lower clinical score, they should expect to be satisfied with the result of their THR with a mid-term survival rate equivalent to that of non-obese patients.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 8 | Pages 1044 - 1048
1 Aug 2009
Jackson MP Sexton SA Walter WL Walter WK Zicat BA

We evaluated 535 consecutive primary cementless total knee replacements (TKR). The mean follow-up was 9.2 years (0.3 to 12.9) and information on implant survival was available for all patients. Patients were divided into two groups: 153 obese patients (BMI ≥ 30) and 382 non-obese (BMI < 30). A case-matched study was performed on the clinical and radiological outcome, comparing 50 knees in each group. We found significantly lower mean improvements in the clinical score (p = 0.044) and lower post-operative total clinical scores in the obese group (p = 0.041). There was no difference in the rate of radiological osteolysis or lucent lines, and no difference in alignment. Log rank test for survival showed no significant differences between the groups (p = 0.167), with a ten-year survival rate of 96.4% (95% confidence interval (CI) 92 to 99) in the obese and 98% (95% CI 96 to 99) in the non-obese.

The mid-term survival of TKR in the obese and the non-obese are comparable, but obesity appears to have a negative effect on the clinical outcome. However, good results and high patient satisfaction are still to be expected, and it would seem unreasonable to deny patients a TKR simply on the basis of a BMI indicating obesity.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 9 | Pages 1158 - 1164
1 Sep 2007
Lusty PJ Watson A Tuke MA Walter WL Walter WK Zicat B

We studied 33 third generation, alumina ceramic-on-ceramic bearings retrieved from cementless total hip replacements after more than six months in situ. Wear volume was measured with a Roundtest machine, and acetabular orientation from the anteroposterior pelvic radiograph. The overall median early wear rate was 0.1 mm3/yr for the femoral heads, and 0.04 mm3/yr for the acetabular liners. We then excluded hips where the components had migrated. In this stable subgroup of 22 bearings, those with an acetabular anteversion of < 15° (seven femoral heads) had a median femoral head wear rate of 1.2 mm3/yr, compared with 0 mm3/yr for those with an anteversion of ≥15° (15 femoral heads, p < 0.001). Even under edge loading, wear volumes with ceramic-on-ceramic bearings are small in comparison to other bearing materials. Low acetabular anteversion is associated with greater wear.