header advert
Results 1 - 50 of 67
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 70 - 70
17 Apr 2023
Flood M Gette P Cabri J Grimm B
Full Access

For clinical movement analysis, optical marker-based motion capture is the gold standard.

With the advancement of AI-driven computer vision, markerless motion capture (MMC) has emerged. Validity against the marker-based standard has only been examined for lightly-dressed subjects as required for marker placement. This pilot study investigates how different clothing affects the measurement of typical gait metrics.

Gait tests at self-selected speed (4 km/h) were performed on a treadmill (Motek Grail), captured by 9 cameras (Qualisys Miqus, 720p, f=100Hz) and analyzed by a leading MMC application (Theia, Canada). A healthy subject (female, h=164cm, m=54kg) donned clothes between trials starting from lightly dressed (LD: bicycle tight, short-sleeved shirt), adding a short skirt (SS: hip occlusion) or a midi-skirt (MS: partial knee occlusion) or street wear (SW: jeans covering ankle, long-sleeved blouse), the lattern combined with a short jacket (SWJ) or a long coat (SWC). Gait parameters (mean±SD, t=10s) calculated (left leg, mid-stance) were ankle pronation (AP-M), knee flexion (KF-M), pelvic obliquity (PO-M) and trunk lateral lean (TL-M) representing clinically common metrics, different joints and anatomic planes. Four repetitions of the base style (LD) were compared to states of increased garment coverage using the t-test (Bonferroni correction).

For most gait metrics, differences between the light dress (LD) and various clothing styles were absent (p>0.0175), small (< 2SD) or below the minimal clinically important differences (MCID). For instance, KF-M was for LD=10.5°±1.7 versus MD=12.0°±0.5 (p=0.07) despite partial knee cover. AP-M measured for LD=5.2°±0.6 versus SW=4.1°±0.7 (p<0.01) despite ankle cover-up. The difference for KF-M between LD=10.5°±1.7 versus SWL=6.0°±0.9, SW and SWJ (7.6°±1.5, p<0.01) indicates more intra-subject gait variability than clothing effect.

This study suggests that typical clothings styles only have a small clinically possibly negligible effect on common gait parameters measured with MMC. Thus, patients may not need to change clothes or be instructed to wear specific garments. In addition to avoiding marker placement, this further increases speed, ease and economy of clinical gait analysis with MMC facilitating high volume or routine application.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 15 - 15
1 Nov 2021
Ponds N Landman E Lenguerrand E Whitehouse M Blom A Grimm B Bolink S
Full Access

Introduction and Objective

An important subset of patients is dissatisfied after total joint arthroplasty (TJA) due to residual functional impairment. This study investigated the assessment of objectively measured step-up performance following TJA, to identify patients with poor functional improvement after surgery, and to predict residual functional impairment during early postoperative rehabilitation. Secondary, longitudinal changes of block step-up (BS) transfers were compared with functional changes of subjective patient reported outcome measures (PROMs) following TJA.

Materials and Methods

Patients with end stage hip or knee osteoarthritis (n = 76, m/f = 44/32; mean age = 64.4 standard deviation 9.4 years) were measured preoperatively and 3 and 12 months postoperatively. PROMs were assessed using the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) function subscore. BS transfers were assessed by wearable-derived measures of time. In our cohort, subgroups were formed based on either 1) WOMAC function score or 2) BS performance, isolating the worst performing quartile (impaired) of each measure from the better performing others (non-impaired). Subgroup comparisons were performed with the Man-Whitney-U test and Wilcoxon Signed rank test resp. Responsiveness was calculated by the effect size, correlations with Pearson's correlation coefficient. A regression analysis was conducted to investigate predictors of poor functional outcome.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 123 - 123
1 Mar 2021
Jelsma J Schotanus M van Kuijk S Buil I Heyligers I Grimm B
Full Access

Hip resurfacing arthroplasty (HRA) became a popular procedure in the early 90s because of the improved wear characteristic, preserving nature of the procedure and the optimal stability and range of motion. Concerns raised since 2004 when metal ions were seen in blood and urine of patients with a MoM implant. Design of the prosthesis, acetabular component malpositioning, contact-patch-to-rim distance (CPR) and a reduced joint size all seem to play a role in elevated metal ion concentrations. Little is known about the influence of physical activity (PA) on metal ion concentrations. Implant wear is thought to be a function of use and thus of patient activity levels. Wear of polyethylene acetabular bearings was positively correlated with patient's activity in previous studies. It is hypothesized that daily habitual physical activity of patients with a unilateral resurfacing prosthesis, measured by an activity monitor, is associated with habitual physical activity.

A prospective, explorative study was conducted. Only patients with a unilateral hip resurfacing prosthesis and a follow-up of 10 ± 1 years were included. Metal ion concentrations were determined using ICP-MS. Habitual physical activity of subjects was measured in daily living using an acceleration-based activity monitor. Outcome consisted of quantitative and qualitative activity parameters.

In total, 16 patients were included. 12 males (75%) and 4 females (25%) with a median age at surgery of 55.5 ± 9.7 years [43.0 – 67.9] and median follow-up of 9.9 ± 1.0 years [9.1 – 10.9]. The median cobalt and chromium ion concentrations were 25 ± 13 and 38 ± 28 nmol/L. A significant relationship, when adjusting for age at surgery, BMI, cup size and cup inclination, between sit-stand transfers (p = .034) and high intensity peaks (p = .001) with cobalt ion concentrations were found (linear regression analysis).

This study showed that a high number of sit-stand transfers and a high number of high intensity peaks is significantly correlated with high metal ion concentrations, but results should be interpreted with care. For patients it seems save to engage in activities with low intensity peaks like walking or cycling without triggering critical wear or metal ions being able to achieve important general health benefits and quality of life, although the quality (high intensity peaks) of physical activity and behaviour of patients (sit-stand-transfers) seem to influence metal ion concentrations.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 124 - 124
1 Mar 2021
Jelsma J Schotanus M Kleinveld H Grimm B Heyligers I
Full Access

An increase in metal ion levels is seen after implantation of all MoM hip prosthesis due to release from the surface directly, more so during articulation and corrosion of the bearing surfaces. The bearing surfaces in MoM prosthesis consist of cobalt, chromium and molybdenum. Several case-reports of cobalt toxicity due to a MoM prosthesis have been published in the last decade. Cobalt intoxication may lead to a variety of symptoms: neuro-ocular toxicity (tinnitus, vertigo, deafness, blindness, convulsions, headaches and peripheral neuropathy), cardiotoxicity and thyroid toxicity. Nausea, anorexia and unexplained weight loss have been described. Systemic effects from metal ions even with well functioning implants or with ion concentrations lower than those associated with known adverse effects may exist and warrant investigation. The aim of this study is to investigate self-reported systemic complaints in association with cobalt ion concentrations in patients with any type of MoM hip prosthesis. A cohort study was conducted. Patients with both unilateral and bilateral, resurfacing and large head metal on metal total hip arthroplasties were included for the current study. Blood metal ion concentrations (cobalt and chromium) were measured by inductively coupled plasma mass spectrometry (ICP-MS). Based on the known cobalt toxicity symptoms of case-reports and toxicology reports a new non-validated questionnaire was developed. questions were subdivided in general questions/symptoms, vestibular symptoms, neurological symptoms, emotional health and cardio- and thyroid toxicity symptoms. Independent samples T test, Fishers Exact Test and Pearsons (R) correlation were used. Analysis was performed on two groups; a low cobalt ion concentration group and a high cobalt ion concentration group A total of 62 patients, 36 (58%) men and 26 (42%) women, were included with a mean age at surgery of 60.8 ± 9.3 years (41.6 – 78.1) and a mean follow up of 6.3 ± 1.4years (3.7 – 9.6). In these patients a total of 71 prosthesis were implanted: 53 unilateral and 9 bilateral. Of these, 44 were resurfacing and 27 large head metal on metal (LHMoM) total hip arthroplasties. Mean cobalt and chromium ion concentrations were 104 ± 141 nmol/L (9 – 833) and 95 ± 130nmol/L (6 – 592), respectively. Based on the different thresholds (120 – 170 or 220 nmol/L) the low cobalt ion concentration group consisted of 44 (71%), 51 (82%) or 55 (89%) subjects respectively. No differences were found in general characteristics, independently of the threshold. The composite score of vestibular symptoms (vision, hearing, tinnitus, dizziness) was significantly higher (p < .050) in all high cobalt ion concentrations groups, independent of the threshold value This study aimed to detect a trend in self-reported systemic complaints in patients with metal-on-metal hip arthroplasty due to raised cobalt ion concentrations. Vestibular symptoms were more common in high cobalt ion concentration groups independent of the three threshold levels tested. The upper limit of acceptable cobalt ion concentrations remains uncertain. With regards to proactively inquired, self-reported symptoms the threshold where effects may be present could be lower than values currently applied in clinical follow-up. It is unknown what exposure to elevated metal ion concentrations for a longer period of time causes with aging subjects. Further research with a larger cohort and a more standardized questionnaire is necessary to detect previously undiscovered or under-reported effects.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_14 | Pages 12 - 12
1 Nov 2018
Grassi M Grimm B Nuritdinow T Lederer C Daumer M Hellsten Y
Full Access

Lower limb fractures are commonly treated with cast immobilization, and as a main consequence of strict immobilization this typically leads to loss in muscle mass, decrease of bone density and decline in functional abilities. Body-worn sensors are increasingly used to assess outcome in clinical trials by providing objective mobility parameters in a real-world environment. The aim of this study is to investigate the usability aspects and potential changes in mobility parameters in partial-immobilization patients in real-world conditions. Six healthy young males (age 22.2 ± 1.2 years; weight 76.5 ± 6.7 kg, height 185.8 ± 6.1 cm. Mean ± standard deviation) wore a leg cylinder cast with walker boot to immobilize their dominant leg for two consecutive weeks. Subjects were asked to continuously wear a tri-axial accelerometer on the waist (actibelt) during waking hours for 6 weeks including 2 weeks before, during and after cast immobilisation. The total amount of days of continuous recording was 339 days with a total wearing time of 120 days. Software packages which allow to detect steps and to estimate real-world walking speed were used to analyse the accelerometry data. It was suspected that knee immobilization would affect strongly the wave form of the signal with an impact on the accuracy of the speed algorithm, whereas the step detection should be more robust. This effect was confirmed in a preliminary study performed to quantify the accuracy under immobilization conditions. On the other hand, step numbers are known to be sensitive to fluctuations in wearing time which was not uniform throughout the entire study. We concluded that in this setting step frequency is the most reliable parameter. Step frequency showed a systematic decrease in the values during the immobilization period which recovered to pre-immobilisation values after cast removal. This confirms the usability of accelerometry and sensitivity of its mobility parameters for clinical outcome assessment.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_14 | Pages 70 - 70
1 Nov 2018
Grimm B
Full Access

The relevance of physical activity (PA) for general health and the value of assessing PA in the free-living environment especially for assessing orthopaedic conditions and outcome are discussed. Available methods for assessing PA such as self-reports, trackers, phone apps and clinical grade monitors are introduced. An overview of devices such as accelerometers for research quality assessments is given and aspects for choosing them such as wear location, usability or study population are reviewed. Basic principles to derive mobility parameters from the PA related sensor signals are presented. The symposium explains mobility parameters, their types, definitions, validity, analysis and those with particular relevance to assess orthopaedic conditions. The application of activity monitors is orthopaedic patient studies is demonstrated in various examples such as knee and hop osteoarthritis and total joint arthroplasty, in frail elderly subjects at fall risk or patients with shoulder pathologies.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_14 | Pages 2 - 2
1 Nov 2018
Bolink SAAN Lenguerrand E Brunton L Hinds N Wylde V Blom AW Whitehouse M Grimm B
Full Access

Restoring native hip anatomy and biomechanics is important to create a well-functioning total hip arthroplasty (THA). Hip offset and leg length are regarded as the most important biomechanical characteristics. This study investigated their association with clinical outcomes including patient reported outcome measures (PROMs) and functional tests. This prospective cohort study was conducted in 77 patients undergoing primary THA (age=65±11 years). Hip offset and leg length were measured on anteroposterior radiographs of the hip pre- and postoperatively. Participants completed the Western Ontario & McMaster Universities Osteoarthritis Index (WOMAC) and performed functional tests (i.e. gait, single leg stance, sit-to-stand, block step-up) preoperatively, and 3 and 12 months postoperatively. A wearable motion sensor was used to derive biomechanical parameters. Associations between radiographic and functional outcomes were investigated with the Spearman's rho correlation coefficient. Subgroup comparisons were conducted for patients with more than 15% decreased or increased femoral offset after THA. Differences in postoperative offset and leg length had little impact on clinical outcomes. Femoral offset subgroups demonstrated no significantly different WOMAC function scores. In functional tests, patients with >15% decreased femoral offset after THA demonstrated more sagittal plane motion during block step-up (14.43° versus 10.66°; p=0.04) while patients with >15% increased femoral after THA demonstrated more asymmetry of frontal plane motion during block step-up (34.05% versus 14.18%; p=0.03). To create a well-functioning THA, there seems to be a reasonable safe zone regarding the reconstruction of offset and leg length.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_14 | Pages 72 - 72
1 Nov 2018
Lipperts M Gotink F van der Weegen W Theunissen K Meijer K Grimm B
Full Access

3D measurement of joint angles so far has only been possible using marker-based movement analysis, and therefore has not been applied in (larger scale) clinical practice (performance test) and even less so in the free field (activity monitoring). 3D joint angles could provide useful additional information in assessing the risk of anterior cruciate ligament injury using a vertical drop jump or in assessing knee range of motion after total knee arthroplasty. We developed a tool to measure dynamic 3D joint angles using 6 inertial sensors, attached to left and right shank, thigh and pelvis. The same sensors have been used for activity identification in a previous study. To validate the setup in a pilot study, we measured 3D knee and hip angles using the sensors and a Vicon movement lab simultaneously in 3 subjects. Subjects performed drop jumps, squats and ran on the spot. The mean error between Vicon and sensor measurement for the maximum joint angles was 3, 7 and 8 degrees for knee flexion, ad/abduction and rotation respectively, and 9, 7 and 10 degrees for hip flexion, ad/abduction and rotation respectively. No calibration movements were required. A major part of the inaccuracy was caused by soft tissue effects and can partly be resolved by improved sensor attachment. These pilot results show that it is feasible to measure 3D joint angles continuously using unobtrusive light-weight sensors. No movement lab is necessary and therefore the measurements can be done in a free field setting, e.g. at home or during training at a sport club. A more extensive validation study will be performed in the near future.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 63 - 63
1 Apr 2018
Daugaard R Tjur M Sliepen M Rosenbaum D Grimm B Mechlenburg I
Full Access

Introduction

Knee osteoarthritis (KOA) causes impairment through pain, stiffness and malalignment and knee joint replacement (KJR) may be necessary to alleviate such symptoms. There is disagreement whether patients with KJR increases their level of physical activity after surgery. The aim of this study is to investigate whether patients with KJR have a higher level of physical activity than patients with KOA, as measured by accelerometer-based method. Furthermore, to investigate whether patients achieve the same level of activity as healthy subjects five years post TJR.

Material and method

54 patients with KOA (29 women, mean age 62±8.6, mean BMI 27±5), 53 patients who had KJR five years earlier (26 women, mean age 66±7.2, mean BMI 30±5) and 171 healthy subjects (76 women, mean age 64±9.7, mean BMI 26±5) were included in this cross sectional study. The level of physical activity was measured over a mean of 5.5 days with a tri-axial accelerometer mounted on the thigh. Number of daily short walking bouts of


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 85 - 85
1 Apr 2018
Bolink S van Laarhoven S Lipperts M Grimm B
Full Access

Introduction

Following primary total knee arthroplasty (TKA), patients experience pain relief and report improved physical function and activity. However, there is paucity of evidence that patients are truly more active in daily life after TKA. The aims of this study were: 1) to prospectively measure physical activity with a wearable motion sensor before and after TKA; 2) to compare patient-reported levels of physical activity with objectively assessed levels of physical activity before and after TKA; 3) to investigate whether differences in physical activity after TKA are related to levels of physical function.

Methods

22 patients (age=66.6 ±9.3yrs; m/f= 12/11; BMI= 30.6 ±6.1) undergoing primary TKA (Vanguard, ZimmerBiomet), were measured preoperatively and 1–3 years postoperatively. Patient-reported outcome measures (PROMs) included KOOS-PS and SQUASH for assessment of perceived physical function and activity resp. Physical activity was assessed during 4 consecutive days in patients” home environments while wearing an accelerometer-based activity monitor (AM) at the thigh. All data were analysed using semi-automated algorithms in Matlab. AM-derived parameters included walking time (s), sitting time (s) standing time (s), sit-to-stand transfers, step count, walking bouts and walking cadence (steps/min). Objective physical function was assessed by motion analysis of gait, sit-to-stand (STS) transfers and block step-up (BS) transfers using a single inertial measurement unit (IMU) worn at the pelvis. IMU-based motion analysis was only performed postoperatively. Statistical comparisons were performed with SPSS and a per-protocol analysis was applied to present the results at follow-up.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 89 - 89
1 Apr 2018
Stoffels A Lipperts M van Hemert W Rijkers K Grimm B
Full Access

Introduction

Limited physical activity (PA) is one indication for orthopaedic intervention and restoration of PA a treatment goal. However, the objective assessment of PA is not routinely performed and in particular the effect of spinal pathology on PA is hardly known. It is the purpose of this study using wearable accelerometers to measure if, by how much and in what manner spinal stenosis affects PA compared to age-matched healthy controls.

Patients & Methods

Nine patients (m/f= 5/4, avg. age: 67.4 ±7.7 years, avg. BMI: 29.2 ±3.5) diagnosed with spinal stenosis but without decompressive surgery or other musculoskeletal complaints were measured. These patients were compared to 28 age-matched healthy controls (m/f= 17/11, avg. age: 67.4 ±7.6 years, avg. BMI: 25.3±2.9). PA was measured using a wearable accelerometer (GCDC X8M-3) worn during waking hours on the lateral side of the right leg for 4 consecutive days. Data was analyzed using previously validated activity classification algorithms in MATLAB to identify the type, duration and event counts of postures or PA like standing, sitting, walking or cycling. In addition, VAS pain and OSWESTRY scores were taken. Groups were compared using the t-test or Mann-Whitney U-test where applicable. Correlations between PA and clinical scores were tested using Pearson”s r.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 19 - 19
1 Apr 2018
Martens S Lipperts M Samijo S Walbeehm R Grimm B
Full Access

Background

Shoulder pain limits range of motion (ROM) and reduces performing activities of daily living (ADL). Objective assessment of shoulder function could be of interest for diagnosing shoulder pathology or functional assessment of the shoulder after therapy.

The feasibility of 2 wearable inertial sensors for functional assessment to differentiate between healthy subjects and patients with unilateral shoulder pathology is investigated using parameters as asymmetry.

Methods

75 subjects were recruited into this study and were measured for at least 8 h a day with the human activity monitor (HAM) sensor. In addition, patients completed the Disability of the Arm, Should and Hand (DASH) score and the Simple Shoulder Test (SST) score. From 39 patients with a variety of shoulder pathologies 24 (Age: 53.3 ± 10.5;% male: 62.5%) complete datasets were successfully collected. From the 36 age-matched healthy controls 28 (Age: 54.9 ± 5.8;% male = 57.1%) full datasets could be retrieved.

Activity parameters were obtained using a self-developed algorithm (Matlab). Outcome parameters were gyroscope and accelerometry-based relative and absolute asymmetry scores (affected/unaffected; dominant/non-dominant) of movement intensity.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 45 - 45
1 Apr 2018
Sliepen M Mauricio E Lipperts M Grimm B Rosenbaum D
Full Access

The significance of physical activity (PA) assessment is widely acknowledged as it can aid in the understanding of pathologies. PA of knee osteoarthritis (KOA) patients has been assessed with varying methods, as it is a disease that is known to impair physical function and activity during daily life. Differences between methods have been described for general outcomes (sport participation or sedentary time), yet failed to describe common activities such as stair locomotion or sit-to-stand (STS) transfers. This study therefore aimed to determine the comparability of various methods to assess daily-life activities in KOA patients.

Sixty-one clinically diagnosed KOA patients wore a tri-axial accelerometer (AX3, Axivity, UK) for one week during waking hours. Furthermore, they performed three physical function tests: a 40-m fast-paced walk test (WT), a timed up-and-go test (TUGT) and a 15 stair-climb test (SCT). Patients were also asked to fill out the Knee Osteoarthritis Outcome Score (KOOS), a KOA-specific questionnaire.

Patients were slightly overweight (average BMI: 27.3±4.8 kg/m2), 60 (±10) years old and predominantly female (53%). The amount of daily level walking bouts was only weakly correlated with the WT performance, representing patients” walking capacity, (ρ=−0.33, p=0.01). Similarly, level-walking bouts during daily life correlated weakly with self-perceived walking capacity addressed by the KOOS (ρ=−0.36, p=0.01). For stair locomotion, a slightly different trend was seen. A moderate correlation was found (ρ=0.65, p<0.001), between the amount of ascending bouts and the objective functional test performance (SCT). However, the subjective assessment of stair ascending limitations (via the KOOS) correlated only weakly with both the functional test performance and the measured level of activity (ρ=−0.30 and −0.35, resp.). Comparable results were found for descending motions. STS transfers during daily life correlated moderately at best with the time to complete the TUGT (ρ=−0.43, p<0.01) and only weakly with the self-perceived effort of STS transfers (ρ=−0.26, p=0.04).

Only weak correlations existed between subjective measures and objective parameters (for both functional tests and daily living activities), indicating that they assess different domains (e.g. self-perceived function vs. actual physical function). Furthermore, when comparing the two objective measures, correlation coefficients increased compared to the subjective methods, yet did not reach strong agreement. These findings suggest that addressing common activities of daily life either subjectively or objectively will result in different patient-related outcomes of a study. Assessment methods should therefore be chosen with caution and compared carefully with other studies.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_9 | Pages 61 - 61
1 May 2017
Mijnes J Heyligers I Grimm B
Full Access

Background

Complete and reliable outcome assessment is important for clinical quality control and research evidence. Online questionnaires offer the opportunity to perform follow-up at distance and desired frequency saving efforts and cost to patients and hospitals increasingly not reimbursed for this service. Patients in this unique study have been invited by mail (not at visit or by phone) and were asked to complete both methods (online, paper) instead of only one option. For the first time, response, completion and reliability of the HOOS, KOOS-PS and New-KSS, popular patient-reported outcomes (PROM's) in TJA were measured.

Methods

Patients (n=107) were invited pre-operative by mail to register at atriumproms.nl (Interactive Studios, Netherlands) and complete PROM's online, followed by a second invitation three days later to complete the same on paper. THA patients (n=48) completed EQ-5D-3L, VAS pain and HOOS. TKA (n=59) questionnaires consisted of KOOS-PS, VAS pain and New-KSS. Reliability was assessed using intraclass correlation coefficient (ICC). ICC was considered excellent >0.75 according to literature.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_9 | Pages 62 - 62
1 May 2017
Lipperts M Senden R Heyligers I Grimm B
Full Access

Background

The goal of total hip arthroplasty (THA) is to reduce pain, restore function but also activity levels for general health benefits or social participation. Thus evaluating THA patient activity can be important for diagnosis, indication, outcome assessment or biofeedback.

Methods

Physical activity (PA) of n=100 primary THA patients (age at surgery 63 ±8yrs; 49M/51F; 170 ±8cm, 79.8 ±14.0kg) was measured at 8 ±3yrs follow-up. A small 3D accelerometer was worn for 4 successive days during waking hours at the non-affected lateral upper leg. Data was analysed using validated algorithms (Matlab) producing quantitative (e.g. #steps, #transfers, #walking bouts) and qualitative (e.g. cadence, temporal distribution of events) activity parameters. An age matched healthy control group (n=40, 69 ±8yrs, 22M/18F) served as reference.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_9 | Pages 63 - 63
1 May 2017
Ahmadinezhad S Lipperts M Senden R Heyligers I Grimm B
Full Access

Background

In total knee arthroplasty (TKA), patient reported outcome on pain, function or satisfaction fails to differentiate treatment options. Activity, a consequence of pain-free, well functioning TKA and a satisfied patient, may be a discriminative surrogate metric, especially when objectively measured.

Methods

Habitual activity was measured in TKA patients (n=32, F/M=20/12, age: 72 ±8yrs) at long-term follow-up (9 ±1yrs) and compared to healthy, age matched controls (n=32, F/M=20/12, age: 71 ±9yrs) using a popular questionnaire (SQUASH) and accelerometry. A small 3D accelerometer (X16-mini, GCD Dataconcepts) was worn for 4 successive days during waking hours at the non-affected lateral upper leg. Data was analysed using validated algorithms (Matlab) counting and timing walking bouts, steps, sitting periods and transfers. Stair climbing events or similar activities such as walking steep slopes were classified using the higher mean hip flexion angle as a feature.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_9 | Pages 60 - 60
1 May 2017
Alizai M Lipperts M Houben R Heyligers I Grimm B
Full Access

Background

To complement subjective patient-reported outcome measures, objective assessments are needed. Activity is an objective clinical outcome which can be measured with wearable activity monitors (AM). AM's have been validated and used in joint arthroplasty patients to count postures, walking or transfers. However, for demanding patients such as after sports injury, running is an important activity to quantify. A new AM algorithm to distinguish walking from running is trialed in this validation study.

Methods

Test subjects (n=9) performed walking and running bouts of 30s duration on a treadmill at fixed speeds (walking: 3, 4, 5, 7km/h, running: 5, 7, 9, 12, 15km/h) and individually preferred speeds (slow, normal, fast, maximum, walk/run transition). Flat and inclined surfaces (8%, 16%), different footwear (soft, hard, barefoot) and running styles (hind/fore-foot) were tested. An AM (3D accelerometer) was worn on the lateral thigh. Previously validated algorithms to classify all gait as walking were adapted to differentiate running from walking, the main criterium being vertical acceleration peaks exceeding 2g within each subsequent 2s-interval. Independently annotated video observation served as reference.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_9 | Pages 56 - 56
1 May 2017
Jelsma J Senden R Schotanus M Kort N Heyligers I Grimm B
Full Access

Background

Metal-on-metal hip implants can produce adverse tissue reactions to wear debris. Increased metal ion concentrations in the blood are measured as a proxy to wear and the complications it can trigger. Many studies have examined various factors influencing the metal ion concentrations. This is the first study to investigate the effect of physical activity level, as objectively measured in daily life, on blood ion levels, expecting higher concentrations for higher patient activity.

Methods

Thirty-three patients (13F/20M, 55.8 ± 6.2 years at surgery) with a unilateral resurfacing hip prosthesis were included. At last follow-up (6.8 ± 1.5 years) cobalt and chromium concentrations in the blood were determined by inductively coupled plasma mass spectrometry. Physical activity was measured during 4 successive days using a 3D-acceleration-based activity monitor. Data was analysed using validated algorithms, producing quantitative and qualitative parameters. Acetabular cup position was measured radiographically. Correlations were tested with Pearson's r'.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 47 - 47
1 Apr 2017
Jelsma J Senden R Schotanus M Kort N Grimm B Heyligers I
Full Access

Background

The second generation metal-on-metal (MoM) prosthesis of the hip became a worldwide success in the 90s. However, after the placement of a MoM prosthesis the cobalt ion concentrations raise significantly. This may lead to systemic complaints and even cobalt toxicity.

Methods

Sixty-one patients (26F/35M) with both an unilateral and bilateral resurfacing or large-head MoM (LHMoM) hip prosthesis were included. At last follow-up (5.77 ± 1.57 yrs) cobalt concentrations in the blood were determined by ICP-MS. Based on the known cobalt toxicity symptoms we developed a non-validated questionnaire. Analysis was done on two groups; a low cobalt concentration group and a high cobalt concentration group. We used 170 nmol/L as the upper limit of well functioning prosthesis as defined by the Dutch Orthopaedic Society (NOV). Independent samples T test and Pearson correlation coefficient were done.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 95 - 95
1 Apr 2017
Bolink S Lenguerrand E Blom A Grimm B
Full Access

Background

Assessment of functional outcome after total hip arthroplasty (THA) often involves subjective patient-reported outcome measures (PROMs) whereas analysis of gait allows more objective assessment. The aims of the study were to compare longitudinal changes of WOMAC function score and ambulatory gait analysis after THA, between patients with low and high self-reported levels of physical function.

Methods

Patients undergoing primary THA (n=36; m/f=18/18; mean age=63.9; SD=9.8yrs; BMI=26.3 SD=3.5) were divided in a high and low function group, on their preoperative WOMAC function score. Patients were prospectively measured preoperatively and 3 and 12 months postoperatively. WOMAC function scores 0–100) were compared to inertial sensor based ambulatory gait analysis.


The Bone & Joint Journal
Vol. 99-B, Issue 4 | Pages 421 - 431
1 Apr 2017
Veldman HD Heyligers IC Grimm B Boymans TAEJ

Aims

Our aim was to prepare a systematic review and meta-analysis to compare the outcomes of cemented and cementless hemiarthroplasty of the hip, in elderly patients with a fracture of the femoral neck, to investigate the mortality, complications, length of stay in hospital, blood loss, operating time and functional results.

Materials and Methods

A systematic review and meta-analysis was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines on randomised controlled trials (RCTs), studying current generation designs of stem only. The synthesis of results was done of pooled data, with a fixed effects or random effects model, based on heterogeneity.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 8 - 8
1 Jan 2017
Goërtz Y Buil I Jochem I Sipers W Smid M Heyligers I Grimm B
Full Access

Falls and fall-related injuries can have devastating health consequences and form a growing economic burden for the healthcare system. To identify individuals at risk for preventive measures and therapies, fall risk assessment scores have been developed. However, they are costly in terms of time and effort and rely on the subjective interpretation of a skilled professional making them less suitable for frequent assessment or in a screening situation.

Small wearable sensors as activity monitor can objectively provide movement information during daily-life tasks. It is the aim of this study is to evaluate whether the activity parameters from wearable monitors correlate with fall risk scores and may predict conventional assessment scores.

Physical activity data were collected from nineteen home-dwelling frail elderly (n=19, female=10; age=81±5.6 years, GFI=5.4±1.9, MMSE=27.4±1.5) during waking hours of 4 consecutive days, wearing a wearable 9-axis activity monitor (56×40×15mm, 25g) on the lateral side of the right thigh. The signal was analysed using self-developed, previously validated algorithms (Matlab) producing the following parameters: time spent walking, step count, sit-stand-transfer counts, mean cadence (steps/min), count of stair uses and intensity counts >1.5G.

Conventional fall risk assessment was performed using the Tinetti sore (range: 0–28=best), a widely used tool directly determining the likelihood of falls and the Short Physical Performance Battery (SPPB, range: 0–12=best) which measures lower extremity performance as a validated proxy of fall risk. The anxiety to fall during activities of daily living was assessed using the self-reported Short Falls Efficacy Scale-International (FES-I, range: 7–28=worst).

Correlations between activity parameters and conventional scores were tested using Pearson's r.

The activity parameters (daily means) for the 19 participants were 70.8min (SD=28.7; min-max= 22.8–126.6) of walking, 4427 steps (SD=2344; min-max= 1391–8269) with a cadence 79.3 steps per minute (SD=17.1; min-max=52.8–103.9) and 33.3 sit-stand transfers (SD=9.7; min-max=8.8–48.0).

The average Tinetti score was 21.2 (SD=5.1; min-max=10.0–27.0), with SPPB scoring 7.8 (SD=2.4; min-max=3.0–12.0), and FES-I 4.6 (SD=5.1; min-max=7.0–23.0).

Strong (r≥0.6) and significant correlations existed between the walking cadence and the Tinetti (r=.60, p=<.01) and SPPB (r=.71, p=<.01) scores. No other correlations were found between the activity parameters and the Tinetti, SPPB and none with the psychological FES-I questionnaire.

Conventional fall risk scores and activity data are comparable to literature values and thus representative of home-dwelling frail elderly including a wide range covered for both dimensions.

No quantitative activity measure had a predictive value for fall risk assessment. Strongly correlated with Tinetti and SPPB, objectively measured cadence as a qualitative parameter seems a useful parameter for remotely identifying fall risk in frail elderly. The perceived anxiety to falls was not correlated to quantitative and qualitative activity parameters suggesting that this psychological aspect hardly affects activity.

Wearable activity monitors seem a valid tool to assess fall risk remotely and thus allow low cost, frequent and large group screening of frail elderly towards a health economically viable tool for a growing societal need. The predictive quality of activity monitored data may be increased by deriving additional qualitative measures from the activity data.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 10 - 10
1 Jan 2017
Buil I Ahmadinezhad S Göertz Y Lipperts M Heyligers I Grimm B
Full Access

Besides eliminating pain, restoring activity is a major goal in orthopaedic interventions including joint replacement or trauma surgery following falls in frail elderly, both treatments of highest socio-economic impact.

In joint replacement and even more so in frail elderly at risk of falling, turns are assessed in clinical tests such as the TUG (Timed Get-up-and-Go), Tinetti, or SPPB so that classifying turning movements in the free field with wearable activity monitors promises clinically valuable objective diagnostic or outcome parameters.

It is the aim of this study to validate a computationally simple turn detection algorithm for a leg-worn activity monitor comprising 3D gyroscopes.

A previously developed and validated activity classification algorithm for thigh-worn accelerometers was extended by adding a turn detection algorithm to its decision tree structure and using the 3D gyroscope of a new 9-axis IMU (56×40×15mm, 25g, f=50Hz,).

Based on published principles (El-Gohary et al. Sensors 2014), the turn detection algorithm filters the x-axis (thigh) for noise and walking (Butterworth low-pass, 2ndorder with a cut-off at 4Hz and 4thorder with a cut-off at 0.3Hz) before using a rotational speed threshold of 15deg/s to identify a turn and taking the bi-lateral zero-crossings as start and stop markers to integrate the turning angle.

For validation, a test subject wore an activity monitor on both thighs and performed a total of 57 turns of various types (walking, on-the-spot, fast/slow), ranges (45 to 360deg) and directions (left/right) in free order while being video-taped. An independent observer annotated the video so that the algorithmic counts could be compared to n=114 turns. Video-observation was compared to the algorithmic classification in a confusion matrix and the detection accuracy (true positives) was calculated.

In addition, 4-day continuous activity measures from 4 test subjects (2 healthy, 2 frail elderly) were compared.

Overall, only 5/114 turns were undetected producing a 96% detection accuracy. No false positives were classified. However, when detection accuracy was calculated for turning angle intervals (45°: 30–67.5°; 90°: 67.5–135°; 180°: 135–270°; 360°: 270–450°), accuracy for all interval classifications combined dropped to 83.3% with equal values for left and right turns. For the 180° and 360°, accuracy was 100% while for the shorter 45° and 90° turns accuracy was 75% and 71% only, mainly because subsequent turns were not separated.

Healthy subjects performed between 470 (office worker) and 823 (house wife) turns/day while frail elderly scored 128 (high fall risk) to 487 turns/day (low fall risk). Turns/day and steps/day were not correlated. In healthy subjects ca. 50% of turns were in the 45° category compared to only ca. 35% in frail elderly.

Turn detection for a thigh-worn IMU activity monitor using a computationally simple algorithm is feasible with high general detection accuracy. The classification and separation of subsequent short turns can be further improved.

In multi-day measurement, turns/day and the distribution of short and long turns seem to be a largely independent activity parameter compared to step counts and may improve objective assessment of fall risk or arthroplasty outcome.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 66 - 66
1 Jan 2017
Reeder I Lipperts M Heyligers I Grimm B
Full Access

Eliminating pain and restoring physical activity are the main goals of total hip arthroplasty (THA). Despite the high relevance of activity as a rehabilitation goal of and criterion for discharge, in-hospital activity between operation and discharge has hardly been investigated in orthopaedic patients.

Therefore, the aim of this study was to a) measure for reference the level of in-hospital physical activity in patient undergoing a current rapid discharge protocol, b) compare these values to a conventional discharge protocol and c) test correlations with pre-operative activities and self-reported outcomes for possible predictors for rapid recovery and discharge.

Patients (n=19, M:F: 5:14, age 65 ±5.7 years) with osteoarthritis treated with an elective primary THA underwent a rapid recovery protocol with discharge on day 3 after surgery (day 0). Physical activity was measured using a 3D accelerometer (64×25×13mm, 18g) worn on laterally on the unaffected upper leg. The signal was analysed using self-developed, validated algorithms (Matlab) calculating: Time on Feet (ToF), steps, sit-stand-transfers (SST), mean cadence (steps/min), walking bouts, longest walk (steps).

For the in-hospital period (am: ca. 8–13h; pm: ca. 13–20h) activity was calculated for day 1 (D1) and 2 (D2). Pre-operative activity at home was reported as the daily averages of a 4-day period. Patient self-report included the HOOS, SQUASH (activity) and Forgotten Joint Score (FJS) questionnaires.

In-hospital activity of this protocol was compared to previously collected data of an older (2011), standard conventional discharge protocol (day 4/5, n=40, age 71 ±7 years, M:F 16:24).

All activity parameters increased continuously between in-hospital days and subsequent am and pm periods. E.g. Time-on-feet increased most steeply and tripled from 21.6 ±14.4min at D1am to 62.6 ±33.4min at D2pm. Mean Steps increased almost as steep from 252 to 655 respectively. SST doubled from 4.9 to 10.5. All these values were sign. higher (+63 to 649%) than the conventional protocol data.

Cadence as a qualitative measure only increased slowly (+22%) (34.8 to 42.3steps/min) equalling conventional protocol values. The longest walking bout did not increase during the in-hospital period. Gender, age and BMI had no influence on in-hospital activity.

High pre-op activity (ToF, steps) was a predictor for high in-hospital activity for steps and SST's at D2pm (R=0.508 to R=0.723). Pre-op self-report was no predictor for any activity parameter.

In-hospital recovery of activity is steep following a cascade of easy (ToF) to demanding (SST) tasks to quality (cadence). High standard deviations show that recovering activity is highly individual possibly demanding personalised support or goals (feedback).

Quantitative parameters were all higher in the rapid versus the conventional discharge protocol indicating that fast activation is possible and safe. Equal cadence for both protocols shows that functional capacity cannot be easily accelerated.

Pre-op activity is only a weak predictor of in-hospital recovery, indicating that surgical trauma affects patients similarly, but subjects may be identified for personalized physiotherapy or faster discharge.

Reference values and correlations from this study can be used to optimize or shorten in-hospital rehabilitation via personalization, pre-hab, fast-track surgery or biofeedback.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 1 - 1
1 Jan 2017
Reeder I Lipperts M Heyligers I Grimm B
Full Access

Introduction: Physical activity is a major outcome in total hip arthroplasty (THA) and discharge criterion. Increasing immediate post-op activity may accelerate discharge, enable fast track surgery and improve general rehabilitation. Preliminary evidence (O'Halloran P.D. et al. 2015) shows that feedback via motivational interviewing can result in clinically meaningful improvements of physical activity. It was the aim of this study to use wearable sensor activity monitors to provide and study the effect of biofeedback on THA patients' activity levels. It was hypothesized that biofeedback would increase in-hospital and post-discharge activity versus controls.

Methods: In this pilot study, 18 patients with osteoarthritis receiving elective primary THA followed by a rapid recovery protocol with discharge on day 3 after surgery (day 0) were randomized to the feedback group (n=9, M/F: 4:5, age 63.3 ± 5.9 years, BMI 26.9 ± 5.1) or a non-feedback control group (n=9, M/F: 0:9, age 66.9 ± 5.1 years, BMI 27.1 ± 4.0). Physical activity was measured using a wearable sensor and parameters (Time-on-Feet (ToF), steps, sit-stand-transfers (SST), mean cadence (steps/min)) were calculated using a previously validated algorithms (Matlab). For the in-hospital period data was calculated twice daily (am, ca. 8–13:00h and pm, ca. 13–20:00h) of day 1 (D1) and 2 (D2). The feedback group had parameters reported back twice (morning, lunch) using bar charts comparing visually and numerically their values (without motivational instructions) to a previously measured reference group (n=40, age 71 ±7 years, M:F 16:24) of a conventional discharge protocol (day 4/5). Activity measures continued from discharge (D3) until day 5 (D5) at home.

Results: Randomization resulted in matched groups regarding age and BMI, but not gender. The first post-op activity assessment (D1am) was identical between groups. Also thereafter similar values with no significant differences in any parameter were seen, e.g. the time-on-feet at D2PM was 59.2 ±31.7min (feedback) versus 62.9 ±39.2min (controls). Also on the day of discharge and beyond, no effect from the in-hospital feedback was measured. For both groups the course of activity recovery showed a distinct drop on day 4 following a highly active day of discharge (D3). On day 5, activity levels only recovered partially. For both groups, all quantitative activity parameters were significantly higher than the reference values used for feedback. Only cadence as a qualitative measure was the same like reference values.

Discussion: Biofeedback using activity values from a body-worn monitor did not increase in-hospital or immediate post-op home activity levels compared to a control group when using the investigated feedback protocol. In general, while the day of discharge steeply boosts patient activity, the day after at home results in an activity drop to near in-patient levels before discharge. In a fast track surgery protocol, it may be of value to avoid this drop via patient education or home physiotherapy. Biofeedback using activity monitors to increase immediate post-op activity for fast track surgery or improved recovery may only be effective when feedback goals are set higher, are personalised or have additional motivational context.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 8 - 8
1 May 2016
Grimm B Lipperts M Senden R
Full Access

Introduction

The goal of total hip arthroplasty (THA) is to reduce pain, restore function but also activity levels for general health benefits or social participation. Thus evaluating THA patient activity can be important for diagnosis, indication, outcome assessment or biofeedback.

Methods

Physical activity (PA) of n=100 primary THA patients (age at surgery 63 ±8yrs; 49M/51F; 170 ±8cm, 79.8 ±14.0kg) was measured at 8 ±3yrs follow-up. A small 3D accelerometer was worn for 4 successive days during waking hours at the non-affected lateral upper leg. Data was analyzed using validated algorithms (Matlab) producing quantitative (e.g. #steps, #transfers, #walking bouts) and qualitative (e.g. cadence, temporal distribution of events) activity parameters. An age matched healthy control group (n=40, 69 ±8yrs, 22M/18F) served as reference.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 9 - 9
1 May 2016
Grimm B Moonen M Lipperts M Heyligers I
Full Access

Introduction

Unicompartmental knee arthroplasty is in particular promoted for knee OA patients with high demands on function and activity. This study used wearable inertial sensors to objectively assess function during specific motion tasks and to monitor activities of daily living to verify if UKA permits better function or more activity in particular with demanding tasks.

Methods

In this retrospective, cross-sectional study, UKA patients (Oxford, n=26, 13m/13f, age at FU: 66.5 ±7.6yrs) were compared to TKA patients (Vanguard, n=26, 13m/13f, age: 66.0 ±6.9yrs) matched for gender, age and BMI (29.5 ±4.6) at 5 years follow-up.

Subjective evaluation of pain, function, physical activity and awareness of the joint arthroplasty was performed by means of four PROMs: VAS pain, KOOS-PS, SQUASH (activity) and Forgotten Joint Score (FJS),

Objective measurement of function was performed using a 3D inertia sensor attached to the sacrum while performing gait test, sit-stand and block-step tests. To derive functional parameters such as walking cadence or sway during transfers or step-up previously validated algorithms were used (Bolink et al., 2012).

Daily physical activity was objectively monitored with a 3D accelerometer attached to the lateral side of the unaffected upper leg during four consecutive days. Activity parameters (counts and times of postures, steps, stairs, transfers, etc.) were also derived using validated algorithms. Data was analysed using independent T-test, Mann-Whitney U test and Pearson's correlation.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 333 - 333
1 Jul 2014
Senden R Heyligers I Grimm B
Full Access

Summary

Physical activity monitoring using a single accelerometer works reliably in clinical practice and is of added value as clinical outcome tool, as it provides objective and more precise information about a patient's activity compared to currently used questionnaires.

Introduction

Standard clinical outcome tools do not comply with the new generation of patients who are younger and more active. To capture the high functional demands of these patients, current outcome scales have been optimised (e.g. New-Knee Society Score: New-KSS), new outcome scales have been developed (e.g. Knee disability and Osteoarthritis Outcome score: KOOS). Also objective measurement tools (e.g. activity monitors) have become increasingly popular. This study evaluates the pre- and postoperative TKA status of patients using such optimised and new outcome tools.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 274 - 274
1 Jul 2014
Hendriks G Senden R Heyligers I Meijer K Grimm B
Full Access

Summary

Upper extremity activity was similar in patients and healthy subjects, showing no significant asymmetry between arms within subjects. Further improvements (e.g. thresholds, filters, inclinometer function) are needed to show the clinical value of AM for patients suffering shoulder complaints.

Introduction

Activity monitoring is becoming a popular outcome tool especially in orthopaedics. The suitability of a single 3D acceleration-based activity monitor (AM) for patients with lower-extremity problems has been shown. However less is known about its feasibility to monitor upper-extremity activity. Insight into the amount and intensity of upper-extremity activity of the affected and non-affected arm (asymmetry) may be of added value for diagnostics, therapy choice and evaluating treatment effects. This study investigates the feasibility of a single AM to evaluate (asymmetry in) upper-extremity activity in daily life.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 27 - 27
1 Jul 2014
Theelen L Wentink N Dhooge Y Senden R Hemert van W Grimm B
Full Access

Summary

Movement analysis (IMA) and activity monitoring (AM) using a body-fixed inertia-sensor can discriminate patients with ankle injuries from controls and between patients of different pathology or post-injury time. Weak correlations with PROMs show its added value in objectifying outcome assessment.

Introduction

Ankle injuries often result in residual complaints calling for objective methods to score outcome alongside subjective patient-reported outcome measures (PROMs). Inertial motion analysis (IMA) and activity monitoring (AM) using a body-fixed sensor have shown clinical validity in patients suffering knee, hip and spine complaints. This study investigates the feasibility of IMA and AM 1) to differentiate patients suffering ankle injuries from healthy controls, 2) to compare different ankle injuries, 3) to monitor ankle patients during recovery.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 275 - 275
1 Jul 2014
Hendriks G Aquilina A Senden R Blom A Meijer K Heyligers I Grimm B
Full Access

Summary

A single 3D accelerometer is accurate in measuring upper-extremity activity durations, rest periods and intensities, suggesting its feasibility for daily life measurements with patients. Further enhancements are feasible to reduce residual false classifications of intensity from certain activities.

Introduction

Physical activity is an important outcome measure in orthopaedics as it reflects how surgically restored functional capacity is used in daily life. Accelerometer-based activity monitors (AM) are objective, reliable and valid to determine lower extremity activity in orthopaedic patients. However the suitability of a single AM to monitor upper-extremity activity, in terms of quantity and intensity, has not been investigated. This study investigates the suitability and validity of a single AM to measure quantity and intensity of upper-extremity activity.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 371 - 371
1 Dec 2013
Wright S Boymans TA Miles T Grimm B Kessler O
Full Access

Introduction

The human body is a complex and continually adapting organism. It is theorised that the morphology of the proximal femur is closely related to that of the distal femur. Patients that have abnormal anatomy in the proximal femur, such as a high femoral neck anteversion angle, may have abnormal anatomy in the distal femur to overcome proximal differences. This phenomenon is of key interest when performing Total Hip Replacement (THR) or Total Knee Replacement (TKR) surgery. The current design and placement of existing hip and knee implants does not account for any correlation between the anatomical parameters of the proximal and distal femur, where bone anatomy may have adapted to compromise for abnormalities.

A preliminary study of 21 patients has been carried out to assess the relationship between the proximal and distal femur. The difficulties in defining and measuring key anatomical parameters on the femur have been widely discussed in the literature [1] due to its complex three dimensional geometry. Using CT scans of healthy octogenarians, it was possible to mark key anatomical landmarks which could be used to define various anatomical axes throughout the femur. Correlation analyses could then be carried out on these parameters to assess the relationship between proximal and distal femur morphology.

Methods

Each femur was initially realigned along the mechanical axis (MA); defined by joining the centre of the femoral head (FHC) to the centre of the intercondylar notch (INC) [2]. All anatomical landmarks were then identified using the Materialise Mimics v12 software (Figure 1 and 2) and exported into Microsoft Excel for analysis. Key anatomical parameters which were derived from these landmarks included the femoral neck axis (FNA), femoral neck anteversion angle (FNAA) [1–4], condylar twist angle, clinical transepicondylar axis (TEA), trochlea sulcus angle and medial and lateral trochlea twist.

A correlation analysis was carried out on SPSS Statistics v20 (IBM) to assess the relationship between proximal and distal anatomical parameters.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_9 | Pages 26 - 26
1 Feb 2013
Brunton L Bolink S van Laarhoven S Lipperts M Grimm B Heyligers I Blom A
Full Access

Accelerometer based gait analysis (AGA) is a potential alternative to the more commonly used skin marker based optical motion analysis system(OMAS). The use of gyroscopes in conjunction with accelerometers (i.e. inertial sensors), enables the assessment of position and angular movements of body segments and provides ambulatory kinematic characterisation of gait.

We investigated commonly used gait parameters and also a novel parameter, Pelvic obliquity (PO) and whether they can be used as a parameter of physical function and correlate with classic clinical outcome scores

Gait was studied in healthy subjects (n=20), in patients with end stage hip OA (n=20) and in patients with end stage knee OA (n=20). Subjects walked 20 metres in an indoor environment along a straight flat corridor at their own preferred speed. A 3D inertial sensor was positioned centrally between the posterior superior iliac spines (PSIS) overlying S1.

Comparing gait parameters of end stage hip OA patients with an age and gender matched healthy control group, significantly lower walking speed, longer step duration and shorter step length was observed. After correcting for walking speed between groups, significantly less average range of motion of PO (RoMpo) was observed for patients with end stage hip OA compared to healthy subjects and patients with end stage knee OA.

IGA allows objective assessment of physical function for everyday clinical practice and allows assessment of functional parameters beyond time only. IGA measures another dimension of physical function and could be used supplementary to monitor recovery of OA patients after TJR.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 193 - 193
1 Sep 2012
Lipperts M Grimm B Van Asten W Senden R Van Laarhoven S Heyligers I
Full Access

Introduction

In orthopaedics, clinical outcome assessment (COA) is still mostly performed by questionnaires which suffer from subjectivity, a ceiling effect and pain dominance. Real life activity monitoring (AM) holds the promise to become the new standard in COA with small light weight and easy to use accelerometers. More and more activities can be identified by algorithms based on accelerometry. The identification of stair climbing for instance is important to assess the participation of patients in normal life after an orthopaedic procedure. In this study we validated a custom made algorithm to distinguish normal gait, ascending and descending stairs on a step by step basis.

Methods

A small, lightweight 3D-accelerometer taped to the lateral side of the affected (patients) or non-dominant (healthy subjects) upper leg served as the activity monitor. 13 Subjects (9 patients, 4 healthy) walked a few steps before descending a flight stairs (20 steps with a 180o turn in the middle), walked some steps more, turned around and ascended the same stairs. Templates (up, down and level) were obtained by averaging and stretching the vertical acceleration in the 4 healthy subjects. Classification parameters (low pass (0.4 Hz) horizontal (front-back) acceleration and the Euclidian distance between the vertical acceleration and each template) were obtained for each step. Accuracy is given by the percentage of correctly classified steps.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 60 - 60
1 Sep 2012
Senden R Heyligers I Grimm B
Full Access

Introduction

Patient satisfaction becomes an important aspect in clinical practice causing a shift from clinician-administered scales (CAS) towards patient-administered measurement outcomes (PROMs). Besides, clinical outcome can objectively be evaluated using inertia-based motion analysis (IMA). This study evaluates different outcome measures by investigating the 1) effect of replacing CAS by PROMS on outcome assessment, 2) redundancy between scales, 3) additional value of IMA in outcome scoring.

Methods

This cross-sectional study included 27 primary unilateral total knee arthroplasty patients (m/f=12/19; age=66.2 yrs), 6 weeks (n=12) and 6 months (n=15) postoperative, who covered a wide range of the scores. One CAS (Knee Society Score (KSS; knee and function subscore), two PROMs (Knee Injury and Osteoarthritis Outcome Score Physical Shortform (KOOS-PS), Visual Analogue Scale satisfaction (VAS)) and a functional test (IMA block step test) were completed. For IMA, patients stepped up and down a 20cm block starting with the affected and followed by the non-affected leg, while wearing an inertia-sensor (3D accelero- and gyrometer) at the lower back (fig. 1). IMA-parameters like performance time (s), bending angle (°), pelvic-obliquity angle (°), were calculated using self-designed algorithms. Differences between legs were determined by ratios (affected/non-affected leg). Pearson's correlations were done, considering r<0.4 poor, 0.4<r<0.7 moderate, r>0.7 strong.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 194 - 194
1 Sep 2012
Van Laarhoven S Bolink S Heyligers I Grimm B
Full Access

Introduction

Our classic outcome scores increasingly fail to distinguish interventions or to reflect rising patient demands. Scores are subjective, have a low ceiling and score pain rather than function. Objective functional assessment tools for routine clinical use are required. This study validates inertial sensor motion analysis (IMA) by differentiating patients with knee versus hip osteoarthritis in a block-step test.

Methods

Step up and down from a block (h=20cm, 3 repetitions) loading the affected (A) and unaffected (UA) leg was measured in n=59 subjects using a small inertial sensor (3D gyro and accelerometer, m=39g) attached onto the sacrum. Patients indicated for either primary unilateral THA (n=20; m/f=4/6, age=69.4yrs ±9.8) or TKA (n=16;m/f=7/9;age=67.8yrs ±8.2) were compared to healthy controls (n=23;m/f=13/10;age=61.7yrs ±6.2) and between each other to validate the test's capacity for diagnostics and as an outcome measure.

The motion parameters derived (semi-) automatically in Matlab for both legs were: front-back (FB-) sway and left-right (LR-) sway (up and down); peak-to-peak accelerations (Acc) during step down. In addition the asymmetry between both legs (ASS) was calculated for each parameter. Group differences were tested (t-test) and the diagnostic value determined by the area under the curve (AUC) of the ROC-curve.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 59 - 59
1 Sep 2012
Grimm B Heyligers I
Full Access

Introduction

Increasing numbers and incidence rates of noisy (squeaking, scratching or clicking) ceramic-on-ceramic (CoC) total hip arthroplasties (THA) are being reported. The etiology seems to always involve stripe wear producing a stick-slip effect in the bearing which excites vibrations. As stripe wear is also found in silent CoC bearings, a theory has been developed that the vibrations become audible only via amplification through the vibrating stem. This was supported by showing that the excitation frequency and the resonance frequency of the plain stem are similar [1]. However, stem resonance in-vivo would be influenced by the periprosthetic bone damping and transmitting stem vibrations. Thus, if stem resonance is conditional for noisy COC hips, these should show periprosthetic bone different to silent hips.

This study compares stem fit&fill and periprosthetic bone between noisy and silent CoC hips.

Methods

In a consecutive series of 186 primary CoC hips with identical stems, cups (Stryker ABG-II) and femoral heads (Alumina V40, 28mm) a dedicated patient questionnaire [2] identified 38 noisy hips (incidence rate: 20.4%, squeakers: n=23). Stem fit&fill and cortical wall thickness (CWT, medial and lateral) were measured on post-op AP x-rays according to an established method [3, Fig 1]. Measurements were repeated by a single blinded observer in a control group of silent hips matched for gender, age, stem size and follow-up time (4.6yrs). Fit&fill and CWT were compared between the noisy and silent group at proximal, mid-stem and distal level and on the medial and lateral side.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 235 - 235
1 Sep 2012
Lipperts M Senden R Van Asten W Heyligers I Grimm B
Full Access

Introduction

In orthopaedics, clinical outcome assessment (COA) is mostly performed by questionnaires which suffer from subjectivity, a ceiling effect and pain dominance. Real life activity monitoring (AM) can objectively assess function and becomes now feasible as technology has become smaller, lighter, cheaper and easier to use. In this study we validated a custom made algorithm based on accelerometry using different orthopaedic patients with the aim to use AM in orthopaedic COA.

Methods

A small, lightweight 3D-accelerometer taped to the lateral side of the affected upper leg served as the activity monitor. AM algorithms were programmed in Matlab to classify standing, sitting, and walking. For validation a common protocol was used; subjects were asked to perform several tasks for 5 or 10 seconds in a fixed order. An observer noted the starting time of each task using a stopwatch.

Accuracy was calculated for the number of bouts per activity as well as total time per activity. 10 Subjects were chosen with different pathologies (e.g. post total knee/hip arthroplasty, osteoarthritis) since the difference in movement dynamics in each pathology poses a challenge to the algorithm.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 361 - 361
1 Sep 2012
Grimm B Tonino A Heyligers I
Full Access

Introduction

Large wear rate reductions have been shown for crosslinked PE in simulators and short- to mid-term clinical wear studies. However, concerns persist about long-term in-vivo oxidation (especially with annealed PE), late accelerating wear and the possibly higher osteolytic potential of crosslinked PE particle debris. This is the first long-term study comparing conventional to crosslinked PE investigating whether the wear reduction is maintained in the long-term and if reduced osteolysis becomes evident.

Materials & Methods

In a prospective study 48 primary THA patients (Stryker ABG-II, 28mm CoCr heads) were randomized to either receive a first generation crosslinked PE (Stryker Duration: 3MRad gamma irradiation in N2, annealed) or then conventional, now “historic” PE (3MRad gamma irradiation in air). Both groups were statistically non-different (p>0.1) regarding age (63.9 years), gender, BMI, stem and cup size, cup inclination, liner thickness or pre- and post-op HHS leaving the insert material as the only variable.

Patients were followed-up annually using the Harris Hip score, AP and lateral radiographs and digital wear measurements using Roman V1.70 [1, 2]. Wear and radiographic signs of osteolysis were analysed at a mean follow-up of 12.9 years (12.0–13.3). Groups were compared using the t-test (means) or the Fisher Exact test (proportions).


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 466 - 466
1 Nov 2011
Koerver R Heyligers I Samijo S Grimm B
Full Access

Introduction: In clinical orthopaedics questionnaire based outcome scores such as the DASH shoulder score suffer from a ceiling effect, subjectivity and the dominance of pain perception over functional capacity. As a result it has becomes increasingly difficult to clinically validate medical innovations in therapy or implants and to account for rising patient demands. Thus, objective functional information needs to be added to routine clinical assessment. Motion analysis with opto-electronic systems, force plates or EMG is a powerful research tool but lab-based, too expensive and time consuming for routine clinical use. Inertia sensor based motion analysis (IMA) can produce objective motion parameters while being faster, cheaper and easier to operate. In this study a simple IMA shoulder test is defined and

its reliability tested,

its diagnostic power to distinguish healthy from pathological shoulders is measured and

it is validated against gold standard clinical scores.

Methods: An inertia sensor (41x63x24mm3, 39g) comprising a triaxial accelerometer (±5g) and a triaxial gyroscope (±300°/sec) was taped onto the humerus in a standardised position. One-hundred healthy subjects without shoulder complaints (40.6 ±15.7yrs) and 40 patients (55.4 ±12.7yrs) with confirmed unilateral shoulder pathology (29 subacromial impingement, 9 rotator cuff pathology, 2 other) were measured. Two motion tasks (‘hand behind the head’ and ‘hand to the back’) based on the Simple Shoulder Test (SST) were performed on both shoulders (three repetitions at self selected speed). Motion parameters were calculated as the surface area described by combing two angular rate signals of independent axes (ARS) or by combing the angular rate and the acceleration of a single axis (COMP score). The relative asymmetry between two sides was scored.

Results: The test produced high intra-(r2≥0.88) and inter-observer reliability (r2≥0.82). Healthy subjects scored a mean asymmetry of 9.6% (ARS) and 14.6% (Comp). Patients with shoulder complaints showed > 3× higher asymmetry (ARS: 34.1%, Comp: 42.7%) than the healthy controls (p< 0.01). Using thresholds (ARS: 16%, Comp 27%) healthy and pathological subjects could be distinguished with high diagnostic sensitivity (e.g. ARS: 97.5% [CI: 85.3–99.9%]) and specificity (e.g. COMP: 85.5% [CI: 76.1–91.1%]). Both asymmetry scores were strongly intercorrelated (r2=0.76) as were the clinical scores (r2=0.62, DASH-SST). Asymmetry and clinical scores were hardly correlated (r2< 0.14).

Discussion: The IMA shoulder test and asymmetry scores showed high reliability meeting or exceeding common clinical scores. With a fast assessment of a simple ADL tasks (test duration < 60s) it was possible to provide diagnostic power at clinically usable level making routine clinical application feasible even by nonspecialist personnel. Weak correlations with the clinical scores show that the new test adds an objective functional dimension to outcome assessment which may have the potential to differentiate new treatments or implants required to trigger new therapeutic innovation cycles. Similar motion tests and parameters could also serve lower extremity outcome assessment.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 409 - 409
1 Nov 2011
Grimm B Boymans T Heyligers I
Full Access

Introduction: In total hip arthroplasty (THA) an optimal fit and fill of the stem is essential for stable fixation. Thus femur morphology must be studied during pre-op planning (implant choice, sizing, positioning) or when a new stem is to be designed. Using plain AP x-ray analysis and the definition of a simple two-level parameter (canal flare index, CFI), Noble et al. identified an age related transition of the endosteal canal in AP view from a ‘champagne flute’ to a ‘stove pipe’. This reference data is 2D only, limited to the endosteal geometry and the elderly age range was defined as 60–90yrs so that the number of octogenerians > 80yrs was too low to analyze morphological features of this rapidly growing and critical THA patient population.

In this study the endosteal and periosteal femur morphology of subjects > 80yrs was studied using 3D CT analysis. It was the goal to

describe age related changes of the femur morphology in 3D,

to study the influence of gender

to investigate if the results may affect fit & fill of current stem designs.

Methods: High-resolution CT-scans (slice thickness 1mm) were made of 170 consenting volunteers (m/ f=101/69). The old group consisted of 119 subjects ≥80yrs (m/f=65/54, mean age: 84.1yrs [80–105]) and the young group of 51 subjects < 80yrs (m/f=36/15, mean age 67.8yrs [39–79]). After thresholding the bone boundaries in Mimics V12 (Materialise, B), the endos-teal and periosteal coordinates were analyzed for width, wall thickness, surface areas and various CFI’s relating dimensions at 20mm above LT and at a distal level (e.g. 60mm below LT, isthmus): Surface CFI (3D-CFI), frontal and lateral CFI based on the AP and ML projections (2D-CFI) and flaring in each of the four directions (1DCFI).

Results: The surface CFI was sign. lower in subjects ≥80yrs (5.08 ±1.23) than in subjects < 80yrs (6.61 ±1.72, p< 0.0001). This difference was sign. larger in females than in males (−32% vs. −17%), an observation valid with reference to any distal level. Equivalent age differences were found in both the frontal and lateral 2D-CFI as well as the medial, lateral and anterior 1D-CFI with changes in the anterior direction (−26.3%) being most dominant. In addition wall thickness was sign. reduced in the very elderly. E.g. at 20mm above LT, the medial wall measured 10.40mm at < 80yrs and 7.61 at ≥80yrs, a reduction of −27% (p< 0.001). In females (−35%) this difference was sign. larger (males: −23%, p< 0.001) even when corrected for height.

Discussion: The age driven transition of proximal femur morphology continues in the octogenarian population. This transition is not limited to two discrete levels in the AP plane as previously reported but it is a continuous 3D phenomenon with high directional asymmetry. In addition, this transition also affects the wall thickness and the periosteal shape. Furthermore a strong gender effect was identified with aging females showing increasingly and asymmetrically less flaring and thinner walls. An age and gender specific THA stem design seems necessary to fit the morphed femur. The asymmetric transition prohibits the effective use of current implant systems with proportionally scaled dimensions but favors a matrix sizing scheme with frontal and lateral dimensions changing independently.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_II | Pages 155 - 156
1 May 2011
Boymans T Heyligers I Grimm B
Full Access

Due to demographic changes patients > 80yrs (octogenarians) are a rapidly growing group in total hip arthroplasty (THA). Stem design, choice, sizing and surgical insertion are more important in these patients as complications such as fractures are critical. Age and gender driven differences regarding canal shape (flare index, CFI), cortical wall thickness (WT) and bone mineral density (BMD) have been studied before only in isolation. Using CT, this study aims to investigate these parameters in combination and in 3D with a focus on the very elderly, identifying the regions critical for THA.

High-resolution CT-scans (1mm slices) of 168 femora (M/F=100/68) were analyzed in 3D (Mimics V12). Flaring indices were based on the dimensions measured 20mm proximal to the lesser trochanter (LT) and 60mm distal to LT: intramedullary surface area (3D-CFI), frontal/lateral planes (2D-CFI) and flaring of the 4 sides medial (med), lateral (lat), anterior (ant), posterior (post) (1D-CFI). WT was calculated subtracting periosteal and endosteal dimensions and BMD was measured in Hounsfield Units (HU). An octogenarian group (80+: n=117, mean age 84yrs [80–105]) was compared to a typical THA age group (80−: n=51, mean age 68yrs [39–79]).

Age and gender had significant effects on several parameters but at different levels, e.g. 2D frontal CFI was more influenced by the small age difference (80+ vs 80−=12%, p< 0.01) than gender (F vs M=2%). However, regarding lateral canal width, gender (F vs M=7%, p< 0.01), was more influential than age (80+ vs 80−=3%). The age-related changes on the shape occurred in 3D (3D-CFI 80+ vs 80−=23%, p< 0.01), but were asymmetrical between the 4 sides (e.g. 1D-CFI 80+ vs 80−: med=11%, p< 0.01) vs ant=27%, p< 0.01). Age and gender did not only effect shape, but also cortical WT, e.g. proximally octogenarian females had 35% less WT than the typical THA age group while males only had 14% lower WT (p< 0.01). Age, gender and shape asymmetry was also reflected in BMD distribution. on the medial side, the BMD gender difference in the octogenarians was small (=1%, p=0.61) but high on the anterior side (12%, p< 0.01). The most critical configurations for the octogenarians were found proximally on the posterior side with the lowest WT, lowest BMD and largest gender difference.

The complex transition of the proximal femur affects shape, WT and BMD, continues in the very elderly and differs between genders. It produces femoral canals and bone stock different from the typical THA patient group. Conventional stems may not fit properly. Surgical implant choice, sizing and templating should consider this asymmetric age plus gender effect on shape, WT and BMD to avoid complications such as periprosthetic fracture, excessive migration or luxation in this vulnerable age group. A major risk zone is the posterior wall where age transition and gender differences are high and WT and BMD low.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_II | Pages 158 - 158
1 May 2011
Grimm B Renckens M Franken M Heyligers I
Full Access

Introduction: While conventional acetate x-rays came at a fixed size and magnification, digital x-rays are freely scalable on the screen and thus must be individually calibrated for surgical measurements (templating). The standard technique is calibration by a reference object (ruler, ball, coin) to be placed into the x-ray. In clinical practice, x-rays are often taken without a calibration object, the object may be malpositioned or the bucky system’s objectfilm distance is unknown to scale with a fixed magnification. Thus calibration based on an anatomic dimension would be a useful alternative in clinical practice.

In this study x-ray calibration using the femoral head diameter as derived by an anatomic formula is compared to the standard technique of using a calibration ball and acetate type fixed magnification.

Methods: In a prospective study three calibration Methods: were applied to post-op AP digital x-rays of 42 patients (m/f=12/30, height: 151–185cm) following primary total hip arthroplasty (ABG-II, 28mm heads) using a common templating software (Endomap): M1) 30mm metal ball lateral to the affected side at the height of the trochanter, M2) a fixed magnification of 121% (average of bucky system as derived from a pilot study) and M3) anatomic calibration by assigning to the natural femoral head of the contralateral side its diameter derived by an anatomic formula. The gender specific linear relationship between height (h [cm]) and the bony femoral head diameter (d [mm]) was obtained from a CT study (n=120): Males: d=0.156h+23.941, Females: d=0.154h+20.040). For each method applied by two independent observers, the implant’s metal head was measured and the relative error [%] calculated.

Results: The standard technique, calibration by a reference object produced a relative error (mean +/−SD) of 2.01+/−1.82% (max=7.9%). Fixed magnification had sign. less error at 1.41+/−1.3% (max=6.5%, p< 0.05). Anatomic calibration produced sign. higher errors at 2.77+/−1.96% (max=8.4%, p< 0.05). Inter-rater reliability was highest for the fixed magnification (r=0.93) and less for ball calibration (r=0.67) and anatomic calibration (r=0.52).

Discussion: It was shown once more that in THR fixed magnification of digital x-rays is on average more accurate and reliable than using a calibration object such as a ball. The theoretical benefit of individual calibration is lost by the variability in landmark palpation, object placement and patient movement though last can be limited by taping the object (e.g. coin) to the skin. Anatomic calibration based on the current formula cannot replace the use of calibration objects. However its error is within clinically tolerable ranges and it can be used when no calibration object is available or the system’s magnification is unknown. The error may be reduced by more accurate height measurements.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_II | Pages 180 - 180
1 May 2011
Grimm B
Full Access

Introduction: Issues regarding total joint replacement (TJR) are perceived differently between patients and doctors and this may lead to patients being unsatisfied about their consultation or even their procedure as questions were not satisfactorily answered. However, even in a research setting, the real patient concerns are difficult to capture as questionnaires bias the answers to the expectations of the researchers and free interviews require too large numbers for monitoring purposes.

Internet keyword search is an indicator of true patient interest as searches are entered in privacy. It is now technologically possible to monitor search term frequency over time, per region and identify the most frequent related searches.

It is the aim of this study to identify the most popular and fastest rising search terms regarding TJR in Europe by studying internet search history.

Methods: Keywords regarding TJR were analysed in Google Insight, a new application which allows the history of search term frequency (relative popularity to a maximum of 100) to be tracked for any time period since 2004. The 10 most frequently searched related terms are evaluated as well as the fastest growing searches regarding the subject in comparison to the previous year. Keywords analysed were: hip replacement and knee replacement (in UK and USA) and their language equivalents in German, French, Spanish, Dutch and Polish to compare national differences.

Results: In the non-English speaking countries, the top 10 search terms are mostly variants of the original keyword (e.g. total hip surgery instead of replacement). The most popular non-synonymous terms relate to the post-op care such as recovery, rehabilitation or physiotherapy. Their prevalence is higher with knee than hip replacement. No top or fastest growing search term referred to pain, complications or longevity. Only rarely implant type related searches are popular in non-English speaking countries (Spain: hip resurfacing, NL: hemi-knee). Also in the UK and USA searches regarding aftercare are most popular but TJR pain is on the rise, especially with knees. In the UK rising search interests includes NHS issues and two product names (Oxford knee, Birmingham hip). In the USA, search focus is even more specific including most major company names plus cost issues.

Discussion: Internet keyword search history seems a promising tool to monitor and analyse public interest in issues of health care provision across nations. In the context of TJR, a dominant and rising interest was found in recovery issues. It appears beneficial to increase the availability and quality of such information (e.g. instructional videos of rehab exercises). Trends towards patient marketing and cost are still weak in Europe. Professional societies or health care providers may try to steer such interest towards objective information sources.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_II | Pages 126 - 127
1 May 2011
Grimm B Vencken W Heyligers I
Full Access

Introduction: Increasing numbers and incidence rates of noisy (squeaking, scratching, clicking) ceramic-on-ceramic (CoC) total hip arthroplasties (THA) are being reported. The etiology seems to always involve stripe wear producing a stick-slip effect in the bearing which excites vibrations. As stripe wear is also found in silent CoC bearings, a theory has been developed that the vibrations become audible only via amplification through the vibrating stem (bell-clapper theory). This was supported by showing that the excitation frequency and the resonance frequency of the plain stem are similar. However, stem resonance in-vivo would be influenced by the periprosthetic bone damping and transmitting stem vibrations. Thus, if the bell-clapper theory were true, noisy CoC hips should show periprosthetic bone different to silent hips.

This study compares stem fit& fill and periprosthetic bone between noisy and silent CoC hips.

Methods: In a consecutive series of 186 primary CoC hips with identical stems, cups (Stryker ABG-II) and femoral heads (Alumina V40, 28mm) a survey identified 38 noisy hips (incidence rate: 20.4%, squeakers: n=23). Stem fit& fill and cortical wall thickness (CWT, medial and lateral) were measured on post-op AP x-rays according to the method of Kim & Kim. Measurements were repeated by a single blinded observer in a control group of silent hips matched for gender, age, stem size and follow-up time (4.6yrs). Fit& fill and CWT were compared between the noisy and silent group at proximal, mid-stem and distal level and on the medial and lateral side.

Results: The endosteal canal width was equal in noisy (N) and silent hips (S) at all levels (e.g. proximal: N=39.7+/−5.5mm, S=41.3+/−5.7mm). On the lateral side also cortical wall thickness (CWT) was the same at all levels (e.g. proximal: N=2.0+/−0.8mm, S=1.9+/−0.9mm). However, on the medial side, noisy hips had higher CWT at proximal (N=4.9+/−2.8mm, S=3.0+/−2.1mm, p< 0.01) and mid-stem level (N=6.2+/−2.1mm, N=4.6+/−1.7mm, p< 0.001). Also Fit& fill was slightly higher (proximal: N=66%, S=62%; mid-stem: N=63%, S=59%, p< 0.05). Differences and significance levels increased when only squeakers were considered.

Discussion: Despite equal endosteal canal widths and lateral cortical wall thickness for noisy and silent hips, noisy hips had sign. thicker medial walls at proximal (+63%) and mid-stem level (+35%) where also fit& fill was higher. This gives evidence that periprosthetic bone (PPB) may play a role in the development of audible noise in CoC hips by providing particular conditions of support, damping and transmission for an oscillating stem which influences noise frequency and intensity. Comparing PPB at different time points indicated that the differences are less due to post-op remodeling but more to pre-op conditions, surgical canal preparation and possibly stem design. The findings shall be verified by a DEXA study.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_II | Pages 103 - 103
1 May 2011
Körver R Heyligers I Grimm B
Full Access

Introduction: Clinical outcome scores such as the DASH shoulder score suffer from subjectivity, a ceiling effect and pain dominance masking functional changes which shall be assessable to address rising patient demands and improve the clinical validation of modern therapeutic improvements. Lab based motion analysis may provide such data but it is too costly, time consuming and complex for routine clinical follow-up. Inertia sensor based motion analysis (IMA) can produce objective movement parameters while being fast, cheap and easy to operate.

In this study, a simple and clinical feasible inertia sensor based motion analysis (IMA) shoulder test is defined and tested for its

reliability,

diagnostic power to recognize pathological movement and

validity against gold standard clinical scores.

Methods: An inertia sensor (41x63x24mm, 39g) comprising 3D accelerometers (±5g) and 3D gyroscopes (±300°/sec) was taped onto the humerus in a standardised position. Healthy subjects (n=100, 40.6 ±15.7yrs) and 50 patients (55.6 ±12.7yrs, m/f 17/33) with confirmed unilateral shoulder pathology (39 subacromial impingement, 11 other) were measured. Two motion tasks (hand-behind-head, hand-to-back) were performed on both shoulders. Using automated algorithms, a simple motion parameter was calculated by adding the peak-to-peak angular rates per axis. The relative asymmetry between both shoulder sides was scored (healthy control within subject). Patients were also assessed using the DASH score and the Simple Shoulder Test (SST).

Results: The test produced high intra- (r2=0.90) and inter-observer reliability (r2=0.83). Asymmetry was > 3 times higher in patients (36.3%) than healthy controls (9.6%, p< 0.001). Using a threshold (> 16% asymmetry) healthy and pathological subjects could be distinguished with high diagnostic sensitivity (98.0%) and specificity (81.0%). The non-affected shoulders of the patient group did not differ from the shoulder of the healthy group (p=0.18). Sub-group analysis comparing the 30 best performing healthy to the 10 highest asymmetry pathological shoulders also revealed sign. lower range of motion, shorter motion path and longer cycle times (p< 0.01). Visual signal analysis exposed specific motion patterns (e.g. healthy: overshooting at point of task achievement, pathological: drift or tremble at rest position). IMA asymmetry was only weakly correlated with DASH or SST (r2< 0.25).

Discussion: The IMA shoulder test and asymmetry score showed high reliability and diagnostic power meeting or exceeding common clinical scores. The fast assessment (t< 60s) of a simple motion tasks makes it suitable for routine clinical follow-up to supplement classic scores. Weak correlations with DASH and SST show that the test adds an objective functional dimension to outcome assessment.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_IV | Pages 546 - 546
1 Oct 2010
Den Teuling J Grimm B Heyligers I
Full Access

Early prediction of outcome following hip fracture surgery would save valuable time towards arranging post-op rehabilitation benefiting the patient and health economics. The study aim was to develop a prognostic scoring system for elderly hip fracture patients, which on admission is able to predict rehabilitation needs at discharge based on pre-injury factors.

A simple and fast prognostic scoring system was developed based on age, pre-injury level of “independence in activities of daily living” (Katz), medical co-morbidities, cognitive functioning (MMSE) and presence of a caregiver, to predict rehabilitation needs at discharge (0–8 points). Rehabilitation options were direct return to pre-injury living situation (group 1), transfer to an orthopaedic rehabilitation unit for a period shorter than 3 months (group 2), or transfer to a psychogeriatric or orthopaedic rehabilitation unit for a period longer than 3 months (group 3). Rehabilitation needs as predicted and the clinical decision by independent, blinded observers were compared. The score was validated in a prospective study on a consecutive cohort of 77 hip fractured patients.

Overall positive predictive value (PPV) of the prognostic score was 0.87 (CI 0.77–0.93), a marked improvement compared to previously published scoring systems with a PPV of 0.68 (CI 0.55–0.79). PPV per group (0.80, 0.92, 0.87) was highest for the most critical groups 2 and 3. In-hospital mortality was 1.3 percent. The average length of hospital stay (LOS) was 11.4 days.

Using the score fast and reliable prediction of rehabilitation needs could be made already on admission gaining maximum time for the preparation of adequate discharge destinations improving care and reducing costly LOS.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_IV | Pages 517 - 517
1 Oct 2010
Grimm B Heyligers I Renckens M
Full Access

Polyethylene (PE) wear particle induced osteolysis remains a major cause of failure in total hip arthroplasty (THA), so that routine clinical measurement of wear stays important. Crosslinked PE promises very low wear rates so that measurement accuracy becomes increasingly important to distinguish alternative materials. The rising use of large femoral heads causes lower linear head penetration also requiring improved accuracy. Digital x-rays and wear measurement software have become standard, but during archiving and exchange of x-rays, image format, resolution or compression are often changed without knowing the effects on wear measurement. This study investigates the effect of digital x-ray resolution and compression on the accuracy of two software programs to measure wear.

The 8-year post-op digital x-rays of 24 THA patients (Stryker ABG-II, 28mm metal femoral head against Duration or conventional PE) were taken from the hospital PACS (Philips Diagnost H, AGFA ADC Solo, Siemens Medview) as DICOM at 5.1 MPix resolution. Images were converted to compression-free TIFF format using Irfanview V4.1. Wear (linear head penetration) was measured using Roman V1.7 and Martell Hip Analysis Suite 7.14. The x-rays were smoothened (Irfanview V4.1, Median Filter: 3) as recommended in literature for compatibility with Martell’s edge detection algorithm. Wear was measured twice by two independent observers at original format and resolution and then once by a single observer at three subsequently halved resolutions (2.6, 1.3, 0.65MPix) and three jpeg compressions (90%, 50%, 20%). Intra- and inter-observer reliability (R) was compared to the reliability of measuring manipulated images (Pearson’s r). The mean absolute wear differences (AD) were calculated versus the original x-ray.

The mean total wear was 0.98+/−0.59mm (0.3–2.4mm) equaling an annual of wear rate of 0.11mm/yr. Using Roman, Intra-R (0.97) and Inter-R (0.96) were high and AD low (0.10 and 0.20mm). Reduced image resolution caused the R to drop only slightly to 0.95 (2.6MPix), 0.92 (1.3MPix) and 0.94 (0.65MPix) while AD remained low (< 0.20mm). Also compression hardly affected R (90%:0.96, 50%: 0.94, 20%:0.93) nor AD (< 0.20mm). Using Martell Intra-R (0.99) and Inter-R (0.87) were also high but dropped with reducing resolution (0.82, 0.72, 0.34, AD: 0.4–1.1mm) but hardly with increased compression (0.95, 0.92, 0.94, AD< 0.20mm).

Low resolution and high compression do not have to be critical for wear measurement accuracy and reliability when edge detection is performed by a trained human eye. This way interpolating the ball and cup perimeters and locating their centers can be performed at accuracy below pixel size (ca. 0.40mm at 0.65MPix). Automatic edge detection is less robust to reducing resolution but performs at high compression. If image size needs to be reduced compression is preferable to reducing resolution.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_IV | Pages 508 - 508
1 Oct 2010
Verlaan L Grimm B Heyligers I Senden R
Full Access

Modern orthopaedics increasingly demands objective functional outcome assessment beyond classic scores and tests suffering from subjectivity, pain dominance and ceiling effects. Inertia based motion analysis (IMA) is a simple method and validated for gait in knee arthroplasty patients. This study investigates whether IMA assessed stair climbing can distinguish between healthy and pathological subjects and is able to diagnose a meniscal tear (MT).

Following standard physical examination (McMurray, rotation pain), 37 patients (18–72yrs) received arthroscopy suspecting a meniscal tear resulting from trauma, degeneration or both. Arthroscopy identified the presence or absence of MT and the osteoarthritis level (Outerbridge).

Prior to arthroscopy, the ascending and descending five stairs twice at preferred speed and without the use of handrails was measured using a triaxial accelerometer (62×41×18mm; m=53g; f=100Hz) taped to the sacrum. Based on peak detection algorithms, temporal motion parameters were derived such as step time up and down (Tup, Tdown), the difference between step time up and down (Tup-down), step irregularity (step time difference of subsequent steps) and step asymmetry (step time difference between affected and non-affected leg).

Patients were compared to a control group of 100 healthy subjects (17–81yrs) without any known orthopaedic pathology. Using the results of arthroscopy, test sensitivity and specificity for differentiating healthy and pathologic subjects and for diagnosing MT were calculated based on threshold values.

Sensitivity and specificity for detecting pathological motion was 0.68 (CI 0.50–0.81) and 0.92 for the most sensitive parameter (Tdown). Sensitivity and specificity to detect MT was 0.74 and 0.25 percent overall compared to 0.53 and 0.50 for the McMurray. Sensitivity increased to 1.00 when MT was combined with a chondropathy scale III or IV (McMurray 0.33).

IMA assessed stair climbing can distinguish healthy and pathological subjects and detect the presence of MT with better sensitivity than classic scores especially when combined with severe chondropathy. IMA is a simple and fast clinical outcome measure suitable for routine follow-up and may support the diagnosis of meniscal tears prior to arthroscopy.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_IV | Pages 616 - 616
1 Oct 2010
Grimm B Heyligers I Senden R Storken G Verlaan L
Full Access

In orthopaedics new objective functional outcome tools are required to validate the benefits of new surgical techniques or implants for which classic scores such as the KSS, HHS or Womac have been shown not to be discriminative enough. Inertia based motion analysis (IMA) is a cheap, fast and simple technique which requires no gait lab or specialist personnel and thus is suitable for routine clinical outcome assessment. IMA on gait has been validated for total knee replacement (TKR) but normal gait was considered not demanding enough for certain orthopaedic differences. Sit-stand-Sit is a more demanding task of daily activity which can be assessed quickly during consultation. This study investigates whether an IMA assessed sit-stand-sit test can differentiate healthy subjects from pre-op TKR patients.

Rising (sit-to-stand) from a chair and sitting down (stand-to-sit) at comfortable, self-selected speed was measured three time using a triaxial accelerometer (range: +/−2g, f=100Hz, 64×62×13mm, m=54g) taped to the sacrum. The chair (no armrests) was height adjustable (legs at 90deg flexion) to level the effort for different body heights.

70 healthy volunteers (f/m=48/22, age range: 17–81yrs) were compared to a pathological group of 20 patients with knee osteoarthritis indicated for unilateral TKR (Biomet Vanguard) measured at 1–10 days pre-op (f/m=11/9; mean age: 65.6yrs, range: 45–79; KSS: 43.5, range: 5–65). The healthy group was split into two subgroups, an age-matched “Old” group (> 50yrs: n1=28, mean age: 65.2yrs) and a “Young” group (< 50yrs: n2=32, mean age: 28.0yrs).

Motion parameters derived were the time to stand up (Tup), time to sit down (Tdwn), the time difference between rising and sitting down (Tu−d) and the combined time of rising and sitting down (tu+d) as mean values and per individual repetition.

All motion parameters were sign. slower with higher variance for the pre-TKR versus the healthy subjects, even when compared to the age-matched subgroup (except Tu−d). Threshold values could be defined to delineate healthy from pathological performance, e.g. Tup> 220ms (6/70=9% vs 17/20=85%, p< 0.01) or Tdwn> 240ms (4/70=6% vs 18/20=90%, p< 0.01) producing high test sensitivity (90%, C.I. 72–98) and specificity (94%, C.I. 89–97). In some false positives (3/6) originally unknown orthopaedic problems were identified in retrospect.

The simple IMA assessed sit-stand-sit test produced motion parameters comparable to values reported for smaller subject groups using methods unsuitable for routine clinical application (e.g. electrogoniometry). Healthy and pathological motion could be distinguished with high sensitivity and specificity even versus age matched controls supporting the validity to use the IMA assessed sit-stand-sit test to complement classic outcome scores with an objective functional component.