header advert
Results 21 - 40 of 66
Results per page:
Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_III | Pages 434 - 434
1 Aug 2008
Burwell R Freeman B Dangerfield P Aujla R Cole A Kirby A Polak F Pratt R Webb J Moulton A
Full Access

The possibility that AIS aetiology involves undetected neuromuscular dysfunction is considered likely by several workers [1,2]. Yet in the extensive neuroscience research of idiopathic scoliosis certain neurodevelopmental concepts have been neglected. These include [3]:

a CNS body schema (“body in the brain”) for posture and movement control generated during development and growth by establishing a long-lasting memory, and

pruning of cortical synapses at puberty.

During normal development the CNS has to adapt to the rapidly growing skeleton of adolescence, and in AIS to developing spinal asymmetry from whatever cause. Examination of publications relating to the CNS body schema, parietal lobe and temporo-parietal junction [4,5] led us to a new concept: namely, that a delay in maturation of the CNS body schema during adolescence with an early AIS deformity at a time of rapid spinal growth results in the CNS attempting to balance the deformity in a trunk that is larger than the information on personal space (self) already established in the brain by that time of development. It is postulated that this CNS maturational delay allows scoliosis curve progression to occur – unless the delay is temporary when curve progression would cease. The maturational delay may be primary in the brain or secondary to impaired sensory input from end-organs [6], nerve fibre tracts [2,7,8] or central processing [9,10]. The motor component of the concept could be evaluated using transcranial magnetic stimulation [11].

Conclusion: Any maturational delay of the CNS body schema could impair postural mechanisms in girls and boys with or without early AIS deformity. The “body in the brain” concept adds a particular CNS mechanism (maturational delay) to the neuro-osseous timing of maturation (NOTOM) hypothesis for the pathogenesis of AIS [12,13]. The NOTOM hypothesis states that there are more girls than boys with progressive AIS because of different developmental timing of skeletal maturation and postural maturation between the sexes in adolescence [12,13].


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_III | Pages 445 - 445
1 Aug 2008
Burwell R Aujla R Dangerfield P Cole A Freeman B Kirby A Pratt R Webb J Moulton A
Full Access

In subjects with lumbar, thoracolumbar or pelvic tilt scoliosis no pattern of structural leg length inequality has been reported [1]. Forty-seven girls of 108 consecutive adolescent patients referred from routine scoliosis school screening during 1996–1999 had lower spinal scoliosis – lumbar (LS) 17, or thoracolumbar (TLS) 30 (mean Cobb angle 16 degrees, range 4–38 degrees, mean age 14.8 years, left curves 25). The controls were 280 normal girls (11–18 years, mean age 13.4 years). Anthropometric measurements were made of total leg lengths (LL), tibiae (TL) and feet (FL) by one observer (RGB) and asymmetries calculated for LL, TL and FL, as absolutes and percentage asymmetries of right/left lengths. There are no detectable changes of absolute asymmetries with age for LL, TL or FL in scoliotic or normal girls. Asymmetries are found in scoliotic girls compared with normals with relative lengthening on the right for each of LL (0.95%) and TL (0.99%) (each p< 0.001), but not FL (0.38%).

Conclusion: The relative lengthenings in the right leg are unrelated statistically to the severity or side of the lower spinal scoliosis; the cause is unknown and may be related to posture – free standing on the right leg [2] – to neuromuscular mechanisms, or to primary skeletal changes in growth plates of femur(s) and tibia(e).


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_III | Pages 475 - 475
1 Aug 2008
Burwell R Dangerfield P Freeman B Aujla R Cole AA Kirby A Pratt R Webb J Moulton A
Full Access

The side distribution of single spinal curves in our school screening referrals for 1988–99 (n=218) suggests that the mechanism(s) determining curve laterality for the upper spine differs from those for the lower spine. We address here the laterality of right thoracic AIS. In the search to understand the aetiology of AIS some workers focus on mechanisms initiated in embryonic life including a disturbance of bilateral symmetry. The normal external bilateral symmetry of the body, highly conserved in vertebrates, results from a default process involving mesodermal somites. The normal internal asymmetry of the heart, major blood vessels, lungs and gut with its glands is also highly conserved among vertebrates. There is recent evidence that vertebrates retain an archaic asymmetric visceral organization in thoracic and abdominal organs (Cooke). In early embryonic life the visceral asymmetry develops from the breaking of the initial bilateral symmetry by a binary asymmetry switch producing asymmetric gene expression around the embryonic node and/or in the lateral plate mesoderm. In the mouse this switch occurs during gastrulation by cilia driving a leftward flow of fluid and morphogen(s) at the embryonic node (nodal flow) favouring precursors of heart, great vessels and viscera on the left. Based on the non-random laterality of thoracic AIS curves, we suggest that the binary asymmetry switch – through genetic/environmental factors extending to involve anomalously left-sided mesodermal precursors of vertebrae, ribs and/or muscles (positively or negatively), explains the distribution of right/left thoracic AIS. Some support for this hypothesis is the prevalence of scoliosis curve laterality associated with situs inversus.


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_III | Pages 476 - 476
1 Aug 2008
Burwell R Aujla R Freeman B Cole AA Dangerfield P Kirby A Pratt R Webb J Moulton A
Full Access

Most workers consider that ribcage changes in AIS are secondary to spinal deformity. Others claim that ribs are pathogenic in curve initiation or aggravation. In 117 consecutive patients referred from school screening in 1996–99 and routinely scanned by ultrasound, 24 had thoracic and 33 thoracolumbar scolioses (right 37, left 20; mean age 14.9 years, range 12–18 years, girls 44 postmenarcheal 37, boys 13). On anteroposterior standing radiographs, Cobb angle (CA), apical vertebral rotation (AVR, Perdriolle) and apical vertebral translation (AVT from the T1-S1 line) were measured (mean & range: CA 19°, 6–42°; AVR 15°, 0–39°; AVT 17 mm, 0–38 mm). Real-time ultrasound in the prone position recorded laminal rotation (LR) and rib rotation (RR) segmentally and the spine-rib rotation difference (SRRD) as LR minus RR to estimate the combined rib deformity in the transverse plane using for thoracic curves apical LR and RR and for thoracolumbar curves T12 LR and T12 RR (mean LR 8.3°, RR 3.8°, SRRD 5.2° absolute). All deformity parameters, radiological and ultrasound, are unrelated to age. SRRD correlates significantly with each of AVR (r=0.753 p< 0.0001), Cobb angle (r=0.738 p< 0.0001), and AVT (r=0.725 p< 0.0001). Partial correlation analysis shows AVR rather than AVT is associated with the transverse plane rib deformity (SRRD/AVR controlling for AVT r=0.386 p=0.004; SRRD/AVT controlling for AVR r=0.257 p=0.058; SRRD/CA controlling for AVR r=0.260 p=0.055 and for AVT r=0.223 p=0.101). These and other findings suggest that rib rotation in thoracic curves is associated with AVR and AVT and in thoracolumbar curves more with AVR than AVT each within the 4th column of the spine.


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_III | Pages 437 - 437
1 Aug 2008
Freeman B Hussain N Watkins R Webb J
Full Access

Introduction: Patient questionnaires permit a direct measure of the value of care as perceived by the recipient. The Scoliosis Research Society outcomes questionnaire (SRS-22) has been validated as a tool for self-assessment. We investigated the correlation between SRS-22 and a detailed radiological outcome two years following anterior correction of Thoraco-Lumbar Adolescent Idiopathic Scoliosis (TL-AIS).

Methods: The SRS-22 questionnaire was completed by 30 patients two years following anterior correction of TL-AIS. Pre-operative, post-operative and two year follow-up radiographs of all 30 patients were assessed. The following parameters were measured at each time point:

Primary Cobb angle,

Secondary Cobb angle,

Coronal C7-midsacral plumb line,

Apical Vertebra Translation (AVT) of primary curve,

AVT of the secondary curve,

Upper instrumented vertebra (UIV) translation,

UIV tilt angle,

Lower instrumented vertebra (LIV), 8) LIV tilt angle

Apical Vertebra Rotation (AVR) of the primary curve,

Sagittal C7-posterior corner of sacrum plumb line

T5-T12 angle,

T12-S1 angle,

shoulder height difference.

The percentage improvements for each were noted. Correlation was sought between Total SRS score, each of the five individual domains and various radiographic parameters listed above by quantifying Pearson’s Correlation Coefficient (r).

Results: Percentage improvement in primary Cobb angle (r = 0.052), secondary Cobb angle (r = 0.165) and AVT of the primary curve (r = −0.353) showed little or no correlation with the SRS-22 total score or any of its five domains. Significant inverse correlation was found between the UIV tilt angle at two years and the SRS-22 (r = −0.516). Lateral radiographs however showed little or no correlation between thoracic kyphosis (r = 0.043) and SRS-22.

Conclusion: The SRS-22 outcomes questionnaire does not correlate with most of the radiographic parameters commonly used by clinicians to assess patient outcome.


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_III | Pages 476 - 476
1 Aug 2008
Burwell R Freeman B Dangerfield P Aujla R Cole AA Dangerfield P Kirby A Pratt R Webb J Moulton A
Full Access

Several workers consider that the aetiology of adolescent idiopathic scoliosis (AIS) involves undetected neu-romuscular dysfunction. During normal development the central nervous system (CNS) has to adapt to the rapidly growing skeleton of adolescence, and in AIS also to developing spinal asymmetry from whatever cause. A new etiologic concept is proposed after examining the following evidence:

anomalous extra-spinal left-right skeletal length asymmetries of upper arms, ribs, ilia and lower limbs suggesting that asymmetries may also involve vertebral body and costal growth plates;

growth velocity and curve progression in relation to scoliosis curve expression;

the CNS body schema, parietal lobe and temporoparietal junction in relation to postural mechanisms; and

human upright posture and movements of spine and trunk.

The central of four requirements is maturational delay of the CNS body schema relative to skeletal maturation during the adolescent growth spurt that disturbs the normal neuro-osseous timing of maturation. With the development of an early AIS deformity at a time of rapid spinal growth the association of CNS maturational delay results in postural mechanisms failing to balance a lateral spinal deformity in an upright moving trunk that is larger than the information on personal space (self) established in the brain by that time of development. It is postulated that CNS maturational delay allows scoliosis curve progression to occur – unless the delay is temporary when curve progression would cease. The concept brings together many findings relating AIS to the nervous and musculoskeletal systems and suggests brain morphometric studies in subjects with progressive AIS.


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_III | Pages 445 - 445
1 Aug 2008
Burwell R Aujla R Freeman B Cole A Kirby A Pratt R Webb J Moulton A
Full Access

In schoolchildren screened for scoliosis about 40% have minor, non-progressive, lumbar scolioses secondary to pelvic tilt with leg-length and/or sacral inequality [1] not reported with preoperative thoracic curves [2]. Forty-nine of 108 consecutive adolescent patients referred from routine scoliosis school screening during 1996–1999 had lower spinal scoliosis with measurable radiological sacral alar and hip tilt angles – lumbar scoliosis 18, thoracolumbar scoliosis 31 (girls 41, boys 8, mean Cobb angle 16 degrees, range 4–38 degrees). In standing full spine antero-posterior radiographs measurements were made of Cobb angle and pelvic asymmetries as sacral alar and iliac heights (left minus right). From anthropometric measurements derivatives were calculated as ilio-femoral length (total leg length minus tibial length) and several length asymmetries, namely: ilio-femoral length asymmetry, total leg length inequality and tibial length asymmetry (all left minus right). Ilio-femoral length asymmetry correlates significantly with sacral alar height asymmetry (girls negatively r= − 0.456, p=0.002, boys positively r=0.726 p=0.041) but not iliac height asymmetry (girls p=0.201) from which three types are identified. Total leg length inequality but not tibial length asymmetry in the girls is associated with sacral alar height asymmetry (r= − 0.367 p=0.017 & r=0.039 p=0.807 respectively). Interpretation is complicated by total leg lengths each including some ilium in which there is asymmetry [3]. But lack of association between ilio-femoral length asymmetry and iliac height asymmetry suggests that the femoral component is more important than iliac component in determining the associations between sacral alar height asymmetry and each of ilio-femoral length asymmetry and total leg length inequality.

Conclusions:

Sacral alar height asymmetry and leg length asymmetries. The evidence suggests that sacral alar height asymmetry is not secondary to the leg length inequalities at least in most girls (negative correlations) and is more likely to result from primary skeletal changes in femur(s) and sacrum.

Sacral alar height asymmetry and Cobb angle. Scoliosis progression and iliac height asymmetry [3] appear to need factors additional to those that determine ilio-femoral length asymmetry – for in the girls Cobb angle is associated with both sacral alar height asymmetry and iliac height asymmetry (each p< 0.001) but not with either ilio-femoral length asymmetry (p=0.249) or total leg length inequality (p=0.650). The additional factors may be biomechanical [4], and/or biological in the trunk [5] and central nervous system [6].


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_III | Pages 481 - 481
1 Aug 2008
Scheuler A Steele N Medhian S Grevitt M Freeman B Webb J Kiely P
Full Access

Study Design: Long-term retrospective case review of function in children with early onset scoliosis managed by selective anterior epiphysiodesis and posterior ‘Luque trolley’ growing instrumentation

Method: spinal and clinical function was assessed utilising SRS-22 and SF-36 outcome measures. The rates of secondary surgical procedures and further definitive fusion were recorded. Pulmonary function was assessed by standardised and averaged spirometric data at follow up.

Results: 25 patients have been clinically reviewed and functionally assessed (age range 6–35 years) mean age 17.7 years at follow up. 16 patients have reached skeletal maturity (8males, 8females) with mean follow up 11.8 years, to a mean age of 22.4 years. clinically 80% of cases were well balanced. At maturity the average loss of axial spinal growth measured 10.25cm (arm span- standing height) (range +4 cm to −21cm). In the immature cohort still growing, median shortening was 0.75%, with average height loss 1.63% of predicted. SRS- 22 and SF-36 questionnaires indicated moderate – good functional outcomes in 80% of patients. Spirometric data, with one case incapable of test compliance, demonstrates 24 % of patients had normal spirometric functional parameters, 32% had mild restrictive deficits, 12% had moderate and 28% had severe restrictive deficits. Poor spirometric function did not correlate with poor outcome measures. Over 50% had required further surgery.

Conclusions: Poor functional outcomes occurred in patients requiring early and multiple surgical revision procedures associated with loss of control or fixation of primary and secondary spinal deformities.


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_III | Pages 445 - 445
1 Aug 2008
Burwell R Aujla R Freeman B Cole A Kirby A Pratt R Webb J Moulton A
Full Access

Patterns of extra-spinal skeletal length asymmetry have been reported for upper limbs [1] and ribcage [2] of patients with upper spine adolescent idiopathic scoliosis. This paper reports a third pattern in the ilia. Seventy of 108 consecutive adolescent patients referred from routine scoliosis school screening during 1996–1999 had lower spine scoliosis – lumbar (LS), thoracolumbar (TLS), or pelvic tilt scoliosis (PTS). Radiologic bi-iliac and hip tilt angles were both measurable in 60 subjects: LS 18, TLS 31, and PTS 11 (girls 44, boys 16, mean age 14.6 years). Cobb angle (CA), apical vertebral rotation (AVR) and apical vertebral translation from the T1-S1 line (AVT) were measured on standing full spine radiographs (mean Cobb angle 14 degrees, range 4–38 degrees, 33 left, 27 right curves). Bi-iliac tilt angle (BITA) and hip tilt angle (HTA) were measured trigonometrically and iliac height asymmetry calculated as BITA minus HTA (corrected BITA=CBITA) and directly as iliac height asymmetry. Iliac height is relatively taller on the concavity of these curves (p< 0.001). CBITA is associated with Cobb angle, AVR and AVT (each p< 0.001).

Conclusion: The relatively taller concave ilium may be 1) real from primary skeletal changes or asymmetric muscle traction on iliac apophyses [3], or 2) apparent from rotation/torsion at the sacro-iliac joint(s).


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_III | Pages 445 - 445
1 Aug 2008
Burwell R Dangerfield P Freeman B Aujla R Cole A Kirby A Pratt R Webb J Moulton A
Full Access

In idiopathic scoliosis the detection of extra-spinal left-right skeletal length asymmetries in the upper limbs, ribs, ilia and lower limbs [1–7] begs the question: are these asymmetries unconnected with the pathogenesis, or are they an indicator of what may also be happening in immature vertebrae of the spine? The vertebrate body plan has mirror-image bilateral symmetries (mirror symmetrical, homologous morphologies) that are highly conserved culminating in the adult form [8]. The normal human body can be viewed as containing paired skeletal structures in the axial and appendicular skeleton as a) separate left and right paired forms (e.g. long limb bones, ribs, ilia), and b) united in paired forms (e.g. vertebrae, skull, mandible). Each of these separate and united pairs are mirror-image forms – enantiomorphs. In idiopathic scoliosis, genetic and epigenetic (environmental) mechanisms [9–11] may disturb the symmetry control of enantiomorphic immature bones [12–13] and, by creating left-right endochondral growth asymmetries, cause the extra-spinal bone length asymmetries, and within one or more vertebrae create growth conflict with distortion as deformities (= unsynchronised bone growth concept) [14].

Conclusion: This enantiomorphic disorder concept applied to the axial skeleton during infancy, juvenility and adolescence – through reductionism into the molecular mechanisms of growth plate responses to different hormones at successive phases of development – provides a new theoretical insight to explain the whole body deformity of AIS. The concept suggests preventive surgery on spine and ribs.


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_III | Pages 450 - 450
1 Aug 2008
Kiely P Steele N Schueler A Breakwell L Medhian S Grevitt M Webb J Freeman B
Full Access

Study design: A retrospective review of patient records with recent clinical and radiographic assessment.

Objective: Long-term evaluation of the Luque trolley for posterior instrumentation in congenital scoliosis.

Summary of background data: From a group of 51 cases treated with the Luque trolley, we review 10 patients with progressive congenital scoliosis (5male, 5female) for a mean follow-up period of 14.8 years, to mean age of 19 years. The mean Cobb angle of the primary curve before surgery was 69.5 degrees. The mean Cobb angle of the secondary cervico-thoracic curve before surgery was 37.1 degrees and of the caudal secondary curve was 26.4 degrees. The mean age at surgery was 5.0 years. 8 patients had a selective epiphysiodesis procedure, 2 with hemi-vertebrectomy, and all underwent single- stage (7 patients) or dual-staged (3 patients) posterior instrumentation with a Luque trolley growing construct.

Method: Clinical evaluation and sequential measurements of Cobb angle were done, with recording of further surgical procedures, associated complications, and final coronal balance. The thoracolumbar longitudinal spinal growth (T1-S1) and growth in the instrumented segmented were also calculated.

Results: The mean preoperative primary curve Cobb angle of 69.5degrees, corrected to a mean postoperative angle of 30.6 degrees, with progression from here to curve magnitude of 38.8 degrees on latest follow up (approximate rate of progression of 0.55 degrees per year).

The mean pre-operative cephalic (cervico-thoracic) Cobb angle of 37.1degrees, corrected to 22 degrees, with progression to 26.6 degrees.

The mean pre-operative caudal (lumbar) Cobb angle of 26.4degrees, corrected to16.2 degrees, this later progressed to 20.6 degrees.

Coronal plane translation measured 1.68 cm at latest follow up [range 0.5–5.1cm].

The thoracolumbar longitudinal growth measured a mean of 8.81cm (approx0.8 cm/year) with a recorded lengthening of 2.54 cm (approx 0.23cm/year) in the instrumented segmented. Half the patients did not require further surgery.

Conclusion: Selective fusion does not always prevent further deformity in congenital scoliosis. The addition of posterior growing construct instrumentation did demonstrate capacity for good correction of primary and secondary curvatures and a limited capacity for further longitudinal growth.


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_III | Pages 476 - 476
1 Aug 2008
Burwell R Aujla R Freeman B Cole AA Dangerfield P Kirby A Pratt R Webb J Moulton A
Full Access

Left-right skeletal length asymmetries in upper limbs related to curve side have been detected with adolescent thoracic idiopathic scoliosis (AIS). In school screening referrals with thoracic scoliosis we find apical vertebral rotation (AVR, Perdriolle) is associated significantly with upper arm length asymmetry. Sixty-nine of 218 consecutive adolescent patients referred routinely during 1988–1999 had idiopathic thoracic scoliosis of whom 61 had left and right upper arm lengths measured with a Holtain anthropometer (right curves 49, left curves 12, mean age 14.9 years, girls 38 postmenarcheal 34, boys 23). The controls are 278 normal girls and 281 boys (11–18 years, mean age 13.5 years). The mean value for Cobb angle is 18 degrees (range 4–42 degrees), AVR 13 (range 0–34 degrees), Cobb angle (CA) and AVR are each positively associated with upper arm length asymmetry (p=0.001 & p< 0.0001 respectively) and after correcting for each of Cobb side, apical level, sex and handedness, AVR and upper arm length asymmetry are still significantly associated (p=0.004 ANOVA). Partial correlation analysis shows AVR is associated with upper arm length asymmetry after controlling for CA (p=0.033); but not CA and upper arm length asymmetry after controlling for AVR (p=0.595). The reason why a larger AVR to the right is associated with a relatively longer right upper arm is unknown. Possibilities include neuromuscular and skeletal mechanisms, the latter relative concave overgrowth of neurocentral synchondrosis and/or of periapical ribs. We suggest consideration be given to combining convex vertebral body stapling (Betz) with concave periapical rib resection (Sevastik and Xiong) for right thoracic AIS in girls.


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_III | Pages 374 - 374
1 Oct 2006
Aylott C Leung Y Freeman B McNally D
Full Access

Introduction: Intra-Discal Electrothermal Therapy (IDET) has been used to treat chronic discogenic low back pain. Proposed mechanisms of action include denervation of the posterior annulus and collagen denaturation. Previous authors have reported on changes in internal disc mechanics following IDET including reduction in stress concentrations possibly leading to a more even distribution of load across the end-plate1. A novel intradiscal decompression catheter has been developed to reduce local disc bulging in cases of contained prolapse. This new catheter is inserted percutaneously into a disc and advanced under radiographic control into a postero-lateral position targeting the herniation. The decompression catheter uses more focused heating and higher temperatures than previous devices and is intended to provide a local decompression of the disc through a thermally-mediated reduction in nuclear volume. The purpose of this study was to investigate changes in internal stress profiles following use of the new catheter.

Methods: Five cadaveric lumbar ‘motion segments’ were dissected from two spines (age 64–84 yrs). Each segment was compressed, normally to 1 kN, while a miniature pressure transducer was withdrawn from posterior to anterior across the mid-sagittal diameter of the disc producing a baseline stress profile. A decompression catheter was inserted into the disc and its position confirmed with plain radiography. The temperature of the catheter was increased to 90°c over a period of 14 minutes. Stress profiles were then repeated.

Results: Stress profiles in three of the five segments showed changes consistent with degenerative change. In these discs stress profiles following ‘treatment’ showed up to a 35% reduction in the magnitude of stress peaks in the posterior annulus. There was very little change in the distribution of stress in the two non-degenerate discs. Stress in the nucleus appeared unchanged in all discs.

Conclusions: Treatment of degenerate discs with the decompression catheter lead to a measurable alteration annular stress peaks that have been associated with degenerative disc disease, while non-degenerate discs were unaffected. These preliminary findings of an ongoing study suggest that the novel decompression catheter has a biomechanical effect in certain classes of disc.


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_III | Pages 363 - 363
1 Oct 2006
Freeman B Fraser R Cain C Hall D
Full Access

Introduction: Intra-Discal Electrothermal Therapy (IDET) has been proposed as a treatment for chronic discogenic low back pain. Reports from prospective outcome studies demonstrate statistically significant improvements, but there are no published randomized controlled trials assessing efficacy against a placebo group.

Methods: Ethical committee approval was obtained prior to the study. Patients with chronic low back pain who failed conservative treatment were considered for the study. Inclusion criteria included one or two level symptomatic internal disc disruption as determined by provocative CT/discography. Patients were excluded if there was > 50% loss of disc height or had had previous back surgery. Fifty-seven patients were randomized with a 2:1 (IDET: Placebo) ratio, 38 to the active IDET arm and 19 to the sham (placebo). The IDET catheter was positioned under sedation to cover at least 75% of the annular tear as defined by the CT/discogram. An independent technician connected the catheter to the generator and either delivered electrothermal energy (active group) or did not (sham group). Surgeon, patient and independent outcome assessor were all blinded. All patients followed a standard rehabilitation programme.

Outcome Measures: Low Back Outcome Score (LBOS), Oswestry Disability Index (ODI), SF-36 questionnaire, Zung Depression Index (ZDI) and Modified Somatic Perceptions Questionnaire (MSPQ) were measured at baseline and 6 months. Successful outcome was defined as: No neurological deficit resulting from the procedure, improvement > 7 points in LBOS, improvements > 7 points in SF-36 subsets (pain / disability, physical functioning and bodily pain)

Results: Two subjects withdrew from the study (both IDET). Baseline demographic data, employment and worker’s compensation status, sitting tolerance, initial LBOS, ODI, SF-36, ZDI and MSPQ were similar for both groups. No neurological deficits occurred as a result of either procedure. No subject in either treatment arm showed improvement of > 7 points in LBOS or the specified domains of the SF-36. Mean ODI was 41.4 at baseline and 39.7 at 6 months for the IDET group compared to 40.7 at baseline and 41.5 at six months for the Placebo group. There was no significant change in ZDI or MSPQ scores for either group.

Discussion: No subject in either treatment arm met criteria for successful outcome. There was no significant change in outcome measures in either group at six months. This study demonstrates no significant benefit from IDET over placebo.


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_III | Pages 391 - 391
1 Oct 2006
Barker-Davies R Freeman B Bayston R Ashraf W
Full Access

Introduction: Propionibacterium acnes (P. acnes), a common anaerobic skin commensal, has been implicated in biomaterial-related infections (BRI). Bacteria can adhere to biomaterial surfaces and grow as a bio-film held together by exopolymer, exhibiting increased antimicrobial resistance. To our knowledge, images of P. acnes biofilms have not previously been published. We have demonstrated the ability of P. acnes to adhere to surgical steel and to develop a biofilm on this material. However its ability to adhere to and develop a biofilm on titanium, a commonly used surgical implant material, has not been fully investigated.

Aims:

To determine the quantitative adherence and biofilm development of P. acnes on titanium compared to surgical steel.

To assess the subsequent effect of penicillin, the therapeutic drug of choice, on mature P. acnes biofilms.

Method: Six clinical isolates of P. acnes were assayed for adherence to materials with and without plasma glycoprotein conditioning film by chemiluminescence and culture. Biofilm development was assessed by chemiluminescence, fluorescence microscopy, environmental (ESEM) and scanning electron microscopy (SEM). Mature biofilms were exposed to plasma concentrations of penicillin and quantified by chemiluminescence and culture. Unpaired student’s t tests and univariate linear regression models were calculated using SPSS software (version 12).

Results: Univariate linear regression showed that P. acnes adherence to titanium was 18% (p=0.001) greater than to steel. Adherence was reduced by the presence of the conditioning film on titanium by 28% (p=0.001), but this made no significant difference to P. acnes adherence to steel. P. acnes biofilms were clearly demonstrated, along with bacterial expolymer, showing an interesting similarity to biofilms of S. epidermidis. P. acnes grows as a thick biofilm on both materials held together by exopolymer and our preliminary results suggest that biofilms on titanium might be less susceptible to antimicrobials after 24 hours of penicillin treatment; a reduction of 94% on steel and 81% on titanium (p=0.057, p=0.39 resp).

Conclusions: P. acnes adheres to steel and titanium, a crucial first step in BRI. Greater numbers of P. acnes adhere to titanium than to steel. The naked surface of titanium is microporous, assisting adhesion. A conditioning film reduces P. acnes adherence to titanium but not to steel. P. acnes develops as a biofilm on steel and titanium. Results indicate that pathogenesis of P. acnes infection on titanium is more successful than on steel. P. acnes biofilms on titanium may be harder to eradicate with antimicrobial agents.


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_III | Pages 388 - 388
1 Oct 2006
Aylott C McKinlay K Freeman B McNally D
Full Access

Introduction: Dynesys is a novel, dynamic stabilization system designed for the treatment of degenerative conditions of the lumbar spine that present with unstable motion segments. This system uses pedicle screws with a modular spacer mounted on a stabilising cord, which controls movement of the instrumented segment in all planes. The purpose of this study was to investigate changes in the biomechanic response of the intervertebral disc (IVD) under normal, flexed and extended loading conditions before and after Dynesys is applied. The IVDs of both the instrumented (bridged) and the adjacent (floating) segment were studied.

Methods: Twelve L3-5 cadaveric segments were dissected and compressed to 1kN in 6° flexion, neutral and 4° extension. The test was done without spacers and with spacers measured to +2mm, neutral and −2mm, where neutral equates to the normal distance between the pedicle screws without an applied load. The stress distribution in the mid-sagittal and posterolateral diameters of both the bridged and floating discs was measured using a miniature pressure transducer. This resulted in greater than 300 stress profiles per specimen. Disc movement and segment motion during loading were recorded using ultrasound imaging and infra-red reflection respectively.

Results: Without stabilization, stress peaks observed in the anterior annulus increased by more than 85% as the specimen was loaded from 4° extension to 6°flexion. With the application of Dynesys, these anterior stress peaks were reduced across the bridged segment. This was most pronounced in 6° flexion where anterior stress peaks of greater than 1 MPa were reduced by 100% in the bridged segment in more than 90% of specimens.

Conclusions: The degree of flexion or extension of the specimen during loading influences the peak stresses generated in the annulus. Dynesys has the potential to relieve peak stresses in the anterior annulus which is most pronounced when the specimen is loaded in flexion.


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_II | Pages 230 - 230
1 May 2006
Burwell R Aujla R Dangerfield P Freeman B Kirby A Webb J Moulton A
Full Access

Background: In lumbar scoliosis curves of school screening referrals were evaluated (1) for the possible relation of pathomechanisms to standard and non-standard vertebral rotation (NSVR) [1], and (2) the relation between apical lumbar axial vertebral rotation and the frontal plane spinal offset angle (FPTA) [2].

Methods: Consecutive patients referred to hospital during routine school screening using the Scoliometer were examined in 1996–9. None had surgery for their scoliosis. There are 40 subjects with either pelvic tilt scoliosis (11), idiopathic lumbar scoliosis (19), or double curves (10)(girls 31, postmenarcheal 25, boys 9, mean age 15.3 years). One observer (RGB) measured: 1) in AP spinal radiographs Cobb angles (CAs), apical vertebral rotations (Perdriolle AVRs), and trigonometrically sacral alar tilt angle (SATA), and FPTA as the tilt of the T1–S1 line to the vertical; and 2) total leg lengths (tape).

Results: Excluding the double curves there are 16 left and 14 right lumbar curves mean CA 11 degrees (range 4–24 degrees), mean AVR 9 degrees (concordant to CA in 18/30, discordant in 7/30), SATA 2.8 degrees (range 0.2–7.7 degrees associated with CA side and severity, p=0.0003), and leg-length inequality 0.7 cm (significantly shorter on left, p< 0.0001 and associated with SATA (p=0.02) but not CA). Neither CA nor AVR in each of the laterality concordant and discordant lumbar or thoracic curves is significantly different. Twenty-six subjects have thoracic curves (16 right) 22 with AVR (mean CA 11 degrees, range 4–17 degrees, AVR 9 degrees, n=22) the CA being associated with each of lumbar CA and SATA (respectively p< 0.0001, p=0.003, n=26). Thoracic curve laterality of CA and AVR is concordant in 12/26 curves and discordant in 10/26 and for concordance/discordance neither is significantly different; thoracic AVR sides with laterality of lumbar curve AVR shown by thoracic AVR (but not CA) being greater in lumbar discordant than in lumbar concordant curves (14 & 7 degrees respectively, p=0.03, n=18 & 7). Both for lumbar curves alone and for lumbar with double curves, AVR by side is significantly associated with FPTA by side (r= −0.568, p=0.001, n=30; r=−0.560, p=0.0002, n=40).

Conclusion: (1) It is hypothesized that different pathomechanisms may separately affect the frontal (CA) and transverse (AVR) planes: in discordant curves these mechanisms may neutralize each other and limit curve progression; concordant curves require these biplanar mechanisms to summate and facilitate curve progression. (2) The association of frontal plane spinal tilt angle and lumbar AVR may result from balance mechanisms affecting trunk muscles – mechanisms that may underlie the complication of post-operative frontal plane spinal imbalance or decompensation [2].


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_II | Pages 227 - 227
1 May 2006
Morgan-Hough C Andrews Freeman B Grevitt M Webb J
Full Access

Background: To assess the treatment of Lenke Type 1 Curves with anterior USS Instrumentation.

Methods: A retrospective radiographic review of 29 cases. Twenty nine patients with Lenke type 1 curves were treated with anterior USS instrumentation. The average age was 14.8 years (range 12–25 years) with an average of 17.4 month follow up (range 6–61 months). 27 were right sided curves, with 2 left sided. Standard AP and Lateral Standing X-rays were taken preoperatively (together with bending films), post-operatively and at follow-up. Measurements recorded at each assessment were the mean Cobb angle, sagittal and coronal balance, kyphosis and lordisis. Complications we associated with the instrumentation were also recorded.

Results: 12 patients had double minithoracotomies, the rest (17), single thoracotomies, the average blood loss at operation was 1055mls, with no significant difference between the two groups. The mean number ofleve1s instrumented was 6 (range 4–8). The mean pre-operative Cobb angle of the major thoracic curve was 53° (range 37–74). This value corrected to 24° on fulcrum bending films. The compensatory lumbar curve averaged 36° bending down to 6.°. The mean correction of these two curves post-operatively and then at most recent follow-up was 21 and 26 degrees for the thoracic curve, and 21 and 20 degrees for the lumbar curve. The mean pre-operative kyphosis was 25 increasing to 34 post-operatively and 39 at follow-up. The mean lumbar lordosis readings were 46, 46 and 45 respectively. Sagittal balance, gradually improved from a mean of 12mm to 11 then 10 at follow -up. Coronal balance did not show the same trend and was 3mm pre-operatively then 7 and 7 at final follow up. Instrumentation complications in total occurred in 9 cases, which included 4 cases of vertebral body fracture requiring circlage wiring and 5 cases of partial screw pulling out of the vertebral body. Fractures requiring wiring occurred at T5, T7, one case of three levels T6,7,8 and one case of two levels T6,7, this complication always occurred at the highest level instrumented. Partial screw pull-out always occurred at T5, with two cases occurring at two levels i.e T5,6.

Conclusion: Good correction was obtained with an mean of 6 instrumented levels. There was however a significant instrumentation complication (31 %). Despite this the intra-operative fractures caused no significant complications and good correction was still achieved in these cases. There are some concerns over mild deterioration in the curves over long term follow up but this deterioration is not clinically significant.


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_II | Pages 229 - 230
1 May 2006
Burwell R Aujla R Cole A Dangerfield P Freeman B Kirby A Pratt R Webb J Moulton A
Full Access

Background: In preoperative thoracic (TC) and thoracolumbar (TLC) AIS curves to evaluate periapical rib-vertebra angle asymmetry [1] and rib-spinal angle asymmetry in relation to the spinal deformity and the 4th column support of the spine [2].

Methods: Consecutive preoperative AIS patients having spinal instrumentation and fusion were assessed using radiographs and ultrasonographs. Twenty-eight preoperative patients with AIS were studied (TC 19, apex T8-9 in 15, TLC 9, apex T12 in 2, L1 in 7, mean Cobb angle 51 degrees). In AP radiographs the following were measured by one observer (RGB): Cobb angle (CA), apical vertebral rotation (AVR) and apical vertebral translation (AVT) from the T1-S1 line; in TC at 6 levels about the apical vertebra (3 above, at and 2 below) for each of 1) rib-vertebral angles (RVAs) and difference (RVAD=concave minus convex RVA), 2) rib-spinal angles (RSAs) to the T1-S1 line and difference (RSAD), and 3) vertebral tilt; and in TLC the RVAs, RVADs, RSAs and RSADs of ribs 11 & 12. The ultrasound apical spine-rib rotation difference (SRRD) was obtained as a measure of transverse plane rib deformity. With the subject in a prone position and head supported, readings of laminal rotation (LR) and rib rotation (RR) were made on the back at 12 levels by one of two observers (RKA, ASK) using an Aloka SSD 500 portable ultrasound machine with a veterinary long (172mm) 3.5 MHz linear array transducer. The maximal difference between LR and RR about the curve apex was calculated as the apical spine-minus-rib rotation difference (SRRD).

Results: Thoracic curves. The RVADs (but not the RVAs, RSAs or RSADs) only at 2 & 3 levels above the apex correlate significantly with each of CA (p=0.054), AVR (p=0.047), AVT (p=0.014, after controlling for CA p=0.131) and vertebral tilt (p=0.032) but not SRRD (all two levels above apex). Thoracolumbar curves. The 11th RSAD (but not RVAD or RSAs) correlates significantly with each of AVR (r= −0.776, p=0.014, after controlling for CA p=0.022) and SRRD (r= −0.890, p=0.001, after controlling for CA p=0.003) that together correlate significantly (r=0.672, p=0.048).

Conclusion: In TC supra-apical rib asymmetry (RVAD) in sternally-stabilized [2] and longest levers of the sternal-rib complex is associated with spinal deformity; in TLC supra-apical rib asymmetry (11th RSAD) is associated with transverse plane deformity of each of the apical vertebra (mainly L1) and 12th ribs. These rib associations, probably secondary to the spinal deformity, may involve a primary rib component in the 4th spinal column. The prognostic value of supra-apical RVAD and RSAD for progressive AIS needs to be evaluated.


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_I | Pages 146 - 146
1 Mar 2006
Behensky H Cole A Freeman B Grevitt M Mehdian H Webb J
Full Access

Objective: We evaluated retrospectively whether there is a role for selective posterior thoracic correction and fusion in double major curves with third generation instrumentation systems.

Methods: In a retrospective review the radiographs of 36 patients with Lenke 3C type curve patterns and having had a selective posterior thoracic correction and fusion with either the Cotrel-Dubousset instrumentation or the Universal Spine System, were evaluated in terms of coronal and sagittal plane balance, curve flexibility, and curve correction with a minimum follow up of two years. Postoperative coronal spinal decompensation was investigated with respect to preoperative radiographic parameters on standing AP, thoracic and lumbar supine side-bending as well as lateral standing radiographs. Coronal spinal decompensation was defined as plumbline deviation of C7 of more than 2 cm with respect to the center sacral vertical line within two years postoperatively. Two groups of patients were analyzed.

Results: 26 patients (72%) showed satisfactory frontal plane alignment by means of C7 plumb line deviation (group A, 1.2 cm to the left), whereas 10 patients (28%) showed coronal spinal decompensation (group B: 2.7 cm to the left; p=0.003). Group differences, could be revealed for lumbar apical vertebral rotation (Perdriolle) (p=0.02, A: 16°, B: 22°) and the percentage correction (derotation) of lumbar apical vertebrae in lumbar supine side-bending films in comparison to AP standing radiographs (p=0.002, A: 49%, B: 27%). Average thoracic curve correction was 51% in group A and 41% in group B (p=0.05). Average lumbar curve correction was 34% in group A and 23% in group B (p=0.09).

High correlation was revealed between postoperative decompensation and derotation of lumbar apical vertebrae (P=0.62, p< 0.001) with a critical value of 40%. A 2x2 table showed that in patients with lumbar apical vertebral derotation of less than 40% specificity was 90% with regard to postoperative decompensation.

Conclusion: Lumbar apical vertebral derotation of less than 40%, determined on lumbar supine side-bending films in comparison to AP standing radiographs, provided the radiographic prediction of postoperative coronal spinal imbalance. We advice close scrunity of the transverse plane in the lumbar supine side-bending film when planning surgical strategy.