header advert
Results 21 - 31 of 31
Results per page:
The Bone & Joint Journal
Vol. 100-B, Issue 1 | Pages 81 - 87
1 Jan 2018
Peng B Yang L Yang C Pang X Chen X Wu Y

Aims

Cervical spondylosis is often accompanied by dizziness. It has recently been shown that the ingrowth of Ruffini corpuscles into diseased cervical discs may be related to cervicogenic dizziness. In order to evaluate whether cervicogenic dizziness stems from the diseased cervical disc, we performed a prospective cohort study to assess the effectiveness of anterior cervical discectomy and fusion on the relief of dizziness.

Patients and Methods

Of 145 patients with cervical spondylosis and dizziness, 116 underwent anterior cervical decompression and fusion and 29 underwent conservative treatment. All were followed up for one year. The primary outcomes were measures of the intensity and frequency of dizziness. Secondary outcomes were changes in the modified Japanese Orthopaedic Association (mJOA) score and a visual analogue scale score for neck pain.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_20 | Pages 20 - 20
1 Dec 2017
Xu L Chen X Wang H Wang F Wang Q
Full Access

Over the past decades, computer-aided navigation system has experienced tremendous development for minimising the risks and improving the precision of the surgery. Nowadays, some commercially-available and self-developed surgical navigation systems have already been tested and proved successfully for clinical applications. However, all of these systems use computer screen to render the navigation information such as the real-time position and orientation of the surgical instrument, virtual path of preoperative surgical planning, so that the surgeons have to switch between the actual operation site and computer screen which is inconvenient and impact the continuity of surgery. In recent years, Augmented Reality (AR)- based surgical navigation is a promising technology for clinical applications. In the AR system, virtual and actual reality are mixed, offering real-time, high-quality visualisation of an extensive variety of information to the users.

Therefore, in this study, a pilot study of a surgical navigation system for orthopaedics based on optical see-through augmented reality (AR-SNS) is presented, which encompasses the preoperative surgical planning, calibration, registration, and intra-operative tracking. With the aid of AR-SNS, the surgeon wearing the optical see-through head-mounted display can obtain a fused image that the 3D virtual critical anatomical structures are aligned with the actual structures of patient in intra-operative real-world scenario, so that some disadvantages of the traditional surgical navigation are overcome (For example, surgeon is no longer obliged to switch between the real operation scenario and computer screen), and the safety, accuracy, and reliability of the surgery may be improved.


Bone & Joint Research
Vol. 6, Issue 4 | Pages 196 - 203
1 Apr 2017
Jin Y Chen X Gao ZY Liu K Hou Y Zheng J

Objectives

This study aimed to explore the role of miR-320a in the pathogenesis of osteoarthritis (OA).

Methods

Human cartilage cells (C28/I2) were transfected with miR-320a or antisense oligonucleotides (ASO)-miR-320a, and treated with IL-1β. Subsequently the expression of collagen type II alpha 1 (Col2α1) and aggrecan (ACAN), and the concentrations of sulfated glycosaminoglycans (sGAG) and matrix metallopeptidase 13 (MMP-13), were assessed. Luciferase reporter assay, qRT-PCR, and Western blot were performed to explore whether pre-B-cell leukemia Homeobox 3 (PBX3) was a target of miR-320a. Furthermore, cells were co-transfected with miR-320a and PBX3 expressing vector, or cells were transfected with miR-320a and treated with a nuclear factor kappa B (NF-κB) antagonist MG132. The changes in Col2α1 and ACAN expression, and in sGAG and MMP-13 concentrations, were measured again. Statistical comparisons were made between two groups by using the two-tailed paired t-test.


The Bone & Joint Journal
Vol. 97-B, Issue 11 | Pages 1566 - 1571
1 Nov 2015
Salunke AA Chen Y Chen X Tan JH Singh G Tai BC Khin LW Puhaindran ME

We investigated whether the presence of a pathological fracture increased the risk of local recurrence in patients with a giant cell tumour (GCT) of bone. We also assessed if curettage is still an appropriate form of treatment in the presence of a pathological fracture. We conducted a comprehensive review and meta-analysis of papers which reported outcomes in patients with a GCT with and without a pathological fracture at presentation. We computed the odds ratio (OR) of local recurrence in those with and without a pathological fracture.

We selected 19 eligible papers for final analysis. This included 3215 patients, of whom 580 (18.0%) had a pathological fracture. The pooled OR for local recurrence between patients with and without a pathological fracture was 1.05 (95% confidence interval (CI) 0.66 to 1.67, p = 0.854). Amongst the subgroup of patients who were treated with curettage, the pooled OR for local recurrence was 1.23 (95% CI 0.75 to 2.01, p = 0.417).

A post hoc sample size calculation showed adequate power for both comparisons.

There is no difference in local recurrence rates between patients who have a GCT of bone with and without a pathological fracture at the time of presentation. The presence of a pathological fracture should not preclude the decision to perform curettage as carefully selected patients who undergo curettage can have similar outcomes in terms of local recurrence to those without such a fracture.

Cite this article: Bone Joint J 2015;97-B:1566–71.


The Bone & Joint Journal
Vol. 96-B, Issue 10 | Pages 1396 - 1403
1 Oct 2014
Salunke AA Chen Y Tan JH Chen X Khin LW Puhaindran ME

Opinion remains divided as to whether the development of pathological fracture affects the prognosis of patients with an osteosarcoma of the extremities.

We conducted a comprehensive systematic review and meta-analysis of papers which reported the outcomes of osteosarcoma patients with and without a pathological fracture. There were eight eligible papers for final analysis which reported on 1713 patients, of whom 303 (17.7%) had a pathological fracture. The mean age for 1464 patients in six studies was 23.2 years old (2 to 82). The mean follow-up for 1481 patients in seven studies was 90.1 months (6 to 240).

The pooled estimates of local recurrence rates in osteosarcoma patients with and without pathological fractures were 14.4% (8.7 to 20.0) versus 11.4% (8.0 to 14.8). The pooled estimate of relative risk was 1.39 (0.89 to 2.20). The pooled estimates of five-year event-free survival rates in osteosarcoma patients with and without a pathological fracture were 49.3% (95% CI 43.6 to 54.9) versus 66.8% (95% CI 60.7 to 72.8). The pooled estimate of relative risk was 1.33 (1.12 to 1.59). There was no significant difference in the rate of local recurrence between patients who were treated by amputation or limb salvage.

The development of a pathological fracture is a negative prognostic indicator in osteosarcoma and is associated with a reduced five-year event-free survival and a possibly higher rate of local recurrence. Our findings suggest that there is no absolute indication for amputation, as similar rates of local recurrence can be achieved in patients who are carefully selected for limb salvage.

Cite this article: Bone Joint J 2014; 96-B:1396–1403


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 2 | Pages 320 - 325
1 Feb 2010
Wang G Yang H Li M Lu S Chen X Cai X

In a rabbit model we investigated the efficacy of a silk fibroin/hydroxyapatite (SF/HA) composite on the repair of a segmental bone defect. Four types of porous SF/HA composites (SF/HA-1, SF/HA-2, SF/HA-3, SF/HA-4) with different material ratios, pore sizes, porosity and additives were implanted subcutaneously into Sprague-Dawley rats to observe biodegradation. SF/HA-3, which had characteristics more suitable for a bone substitite based on strength and resorption was selected as a scaffold and co-cultured with rabbit bone-marrow stromal cells (BMSCs). A segmental bone defect was created in the rabbit radius. The animals were randomised into group 1 (SF/HA-3 combined with BMSCs implanted into the bone defect), group 2 (SF/HA implanted alone) and group 3 (nothing implanted). They were killed at four, eight and 12 weeks for visual, radiological and histological study.

The bone defects had complete union for group 1 and partial union in group 2, 12 weeks after operation. There was no formation of new bone in group 3. We conclude that SF/HA-3 combined with BMSCs supports bone healing and offers potential as a bone-graft substitute.


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_II | Pages 362 - 362
1 Jul 2008
Chen X Li G
Full Access

Mesenchymal stem cells (MSCs) are immunosuppressive and have been used to facilitate tissue repair in the context of allogeneic implantation. However, xenogeneic cell transplantation has not been fully explored. The present study investigated the feasibility of xenogeneic MSCs implantation in mice.

MSCs were harvested from the bone marrow of GFP rats (Green Fluorescent Protein transgenic rats), and cultured as previously described. 1 million GFP MSCs were loaded onto the synthetic HA/TCP porous Skelite blocks and implanted intramuscularly into the quadriceps of the MF1 and SCID mice. After 11 weeks, the implants were harvested and processed for histology examination. Upon termination, the mononuclear cells from the peripheral blood of each animal were also collected for mixed lymphocyte culture to examine lymphocyte proliferation potential and T-cell mediated cell lysis (cytotoxic) assays.

In the SCID mice, there was sparse osteoid tissue formation in the implants, whereas only dense connective tissues were seen in the implants of the MF1 mice. Osteocalcin mRNA expression was confirmed in the osteoid tissues in the implants from the SCID mice, but it was not detected in the MF1 mice by RT in situ PCR examination. Cells of GFP-rat origin were observed in both the MF1 and SCID mice (more so in the SCID mice) after 11 weeks implantation, which were confirmed by positive immunostaining of anti-GFP antibody. In the MF1 mice after 11 weeks xenogeneic MSCs implantation, the rate of lymphocyte proliferation was significantly increased when mixed with the GFP-MSCs compared to that of mixed lymphocyte culture assays in the SCID or MF1 mice without xenogeneic MSCs implantation, suggesting that implantation of xenoge-neic MSCs has promoted host anti-graft immunogenic responses towards to otherwise immunosuppressive MSCs.

In conclusion, xenogeneic rat MSCs transplanted in immunocompetent mice has survived for prolonged period, but their function was comprised to certain extent and this may be due to the increased host anti-graft immune sensitization after exposed to the xenogeneic MSCs.


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_I | Pages 39 - 40
1 Mar 2008
Waddell J Chen X Griffith K Morton J Schemitsch E
Full Access

Fifty-five patients undergoing isolated acetabular revisions in fifty-seven hips were available for review. In thirty-three of fifty-seven hips there was no significant acetabular deficiency; of the remaining twenty-four hips twenty underwent allograft reconstruction and four autogenous bone grafting. Mean follow-up was four years with a range of three to seven years; there have been no femoral loosening, and three further surgical procedures for hip instability. All acetabular components at last review were soundly fixed with the exception of one patient who underwent excision arthroplasty at twelve months for deep infection.

The purpose of this study was to review the functional outcome and the fate of the femoral stem and revised acetabular component following isolated ace-tabular revision.

Findings of the current study demonstrate that isolated acetabular revision does not compromise the final functional nor radiographic outcome in acetabular revision in appropriately selected patients; the fate of the femoral component is not adversely influenced by this procedure.

There is no need to remove the femoral component at the time of acetabular revision if the femoral component is well fixed and stable by pre- and intra-operative assessment.

Prospectively entered data on fifty-seven hips (fifty-five patients) who have undergone isolated acetabular revision without femoral revision was available for review. All patients were assessed pre-operatively and post-operatively on an annual basis by means of physical examination, x-ray, SF-36 and WOMAC questionnaires.

In thirty-three of fifty-seven hips there was no significant acetabular deficiency; of the remaining twenty-four hips, one had a segmental defect, thirteen had a cavitary defect and ten had a combined segmental and cavitary defect. Osteolysis existed in the proximal femur of two hips.

Bone grafting in twenty-four hips consisted of morselized allograft in nine; combined structural and morselized allograft used in eleven and autogenous bone used in four acetabular defects. Autogenous bone grafting was done in two femoral osteolytic lesions.

Mean follow-up was four years with a range of three to seven years. The mean duration of arthroplasty prior to revision was fourteen years (range four to twenty-three years).

There were no nerve palsies, vascular injuries or intra-operative fractures in this patient group. All ace-tabular components at latest review were soundly fixed with the exception of one patient who underwent excision arthroplasty at twelve months for deep infection. Twenty-one of the twenty-four hips with bone grafting demonstrated positive radiographic signs of incorporation; the remaining threehips have a stable interface but no evidence of bone ingrowth. Three of the fifty-seven hips presented with hip dislocations after revision arthroplasty; two were managed by closed reduction; the third by open reduction and soft tissue repair.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 11 | Pages 1515 - 1518
1 Nov 2007
Zhang X Duan L Li Z Chen X

We report our experience of the use of callus distraction with a monolateral fixator for the treatment of acquired radial club-hand deformity after osteomyelitis. Between 1994 and 2004, 13 patients with a mean age of eight years (4 to 15) were treated by callus distraction with a monolateral fixator after a preliminary period of at least four weeks in a corrective short-arm cast.

All patients achieved bony union and were satisfied with the functional and cosmetic outcome. There were no major complications, but three patients required cancellous bone grafting at the docking site for delayed union. Local treatment and oral antibiotics were required for pin-site infection in six patients. There were no deep infection or recurrence of osteomyelitis.


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_III | Pages 392 - 392
1 Oct 2006
Wan C He Q Chen X Li G
Full Access

Introduction: Peripheral blood derived mesenchymal stem cells (PBMSCs) are multipotent cells capable of forming bone, cartilage, fat, and other connective tissues. Bone marrow derived mesenchymal stem cells (BMMSCs) have promoted repair a critical-sized bone defect in several animal models including mouse, rat, rabbit, and dog. The aim of this study was to investigate whether or not the use of allogenic BMMSCs and PBMSCs could regenerate a critical-sized bone defect in rabbit ulnae.

Methods: Rabbit peripheral blood mononuclear cells (PBMNCs) were isolated by density gradient centrifugation method and cultured at a density of 100,000/ cm2 in flasks with DMEM 15% FCS. Colony forming efficiency (CFE) was calculated and their multipotential differentiations into bone, cartilage, and fat were examined under different induction conditions. Specific differentiation markers were examined using cytochemistry and immunocytochemistry methods in the PBMSCs. Critical-sized ulna bone defects, 20 mm in length, were created in the mid-diaphysis of both ulnae in twelve 6 month old NZW rabbits. The ulnar defects were treated as the following 5 groups: empty control (n=4), PBMSCs/Skelite (multi-phase porous calcium phosphate resorbable substitute, EBI Company, USA) (n=5), BMMSCs/Skelite (n=4), PBMNCs/Skelite (n=5), and Skelite alone (n=5). All animals were sacrificed 12 weeks after treatment. The bone regeneration was evaluated by regular radiography, and all samples were subject to peripheral quantitative computed tomography (pQCT) and histological examination at the end point.

Results: The CFE of PBMSCs ranged from 1.2 to 13 per million mononuclear cells. Spindle and polygonal shaped cells were found in the primary PBMSCs colony, showing similar differentiation potential with BMMSCs. Mineralized bone nodules formed under osteogenic media were positive for Alizarin Red S staining in the PBMSCs. Chondrogenic differentiation was identified in serum free media containing TGF-¦Â1 (10 ng/ml), with type II collagen expression and Alcian blue positive nodule formation. Adipocytic differentiation was tested with or without adipogenic media, with positive Oil Red O staining for lipid accumulation and CEBP¦Á expression in the PBMSCs. After twelve weeks implantation, the ulnar defects were not healed in the empty control group; the total bone density in PBMSCs/Skelite and BMMSCs/Skelite treated defects were greater than that of PBMNCs/Skelite and Skelite alone treated groups (p< 0.05), with higher score of X-ray evaluation (p< 0.05). Histologically, there were a greater amount of new bone present in both the PBMSCs/Skelite and BMMSCs/Skelite treated groups compared to the PBMNCs/Skelite and Skelite alone treated groups.

Conclusions: This study demonstrated that PBMSCs were multipotent cells; allogenic PBMSCs loaded onto porous calcium phosphate resorbable substitute had enhanced bone regeneration of a critical-sized segmental defect in the rabbit ulna. PBMSCs may be a new source of osteogenic stem cells for bone regeneration and tissue engineering, and further investigations are undergoing to clarify their functions.


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_III | Pages 402 - 402
1 Oct 2006
Chen X Xu H Wan C Li G
Full Access

Introduction: Recently, co-transplantion of mesenchy-mal stem cells (MSCs) with hematopoietic stem cells (HSCs) has been shown to alleviate complications such as GVHD and speeding recovery of HSCs. This in vivo finding suggests that coculture of MSCs and HSCs may enhance their growth potentials in vitro. As the large-scale expansion of HSCs has been achieved by NASA’s suspension culture system, we further examined the effects of this suspension culture system (rotary bio-reactor) on MSCs’ proliferation and differentiation potentials in vitro.

Methods: Mononuclear cell fractions (MNCs) of human bone marrow aspirates (n=6, ages 46–81) were collected by density gradient centrifugation. The cells were inoculated into bioreactor (RCCS, Synthecon Inc., Texas, USA) at the concentration 1x106 cells/ml, in MyelocultTM medium supplemented with 50ng/ml SCF, 20ng/ ml rhIL-3 and rhIL-6 (10ng/ml SCF, 2ng/ml IL-3 and IL-6 after the first feeding) and 10-6 M hydrocortisone for 8 days. The medium was fully exchanged after 3 days and 20% daily thereafter. Total cell numbers in the bioreactor were counted daily using hemacytometer. Cells from day 1, 4, and 8 cultures were subjected to tri-color flow cytometry examination using CD34, CD44, and Stro-1 antibodies. By the end of 8 day culture, the output cells were resuspended in DMEM medium with 10% FBS and cultured in T75 flasks at 1x105 cells/cm2 for further 3 weeks. Upon harvest, half of the attached MSCs were prepared for western blotting assay using various antibodies. The other half was further cultured for 13–28 days in osteogenic, chondrogenic, and adipogenic induction medium respectively. Cell differentiation results were examined by histology staining, immunohistochemistry (ICC) and transmission electron microscope (TEM) examinations.

Results: After 8-day culture in bioreactor, flow-cytometric analysis confirmed that two cell populations, CD34+CD44+ (HSCs) and Stro-1+CD44+ (MSCs), increased 8-fold and 29-fold respectively, when compared to the values of the MNCs prior to bioreactor treatment. Cell counting revealed that the total cell expansion over 8 days was 9-fold above the number of the input MNCs. Western blotting data confirmed that bioreactor-expanded MSCs population remained in their early-stage with the expression of primitive MSCs markers such as CD105 (endoglin, SH-2) and Vimentin, whereas no expression of differentiation markers including osteocalcin (osteogenesis), Type II collegen (chondrogenesis) and C/EBPα (adipogenesis). Upon differentiation induction, the bioreactor-expanded MSCs were capable of differentiating into osteocytes, chondrocytes, and adipocytes as evidenced by histology staining, ICC and TEM examinations.

Discussion: Our study has shown that the percentage of MSCs (Stro-1+CD44+) increased 29 folds in the bone marrow derived MNCs after they have been cultured with Myelocult¢â medium in bioreactor for 8 days. The suspension culture system did not affect the subsequent in vitro proliferation and differentiation potentials of MSCs. Current study indicates that rotary bioreactor may be used to rapidly expand the numbers of traditionally attachment-dependent MSCs from bone marrow-derived MNCs, which may be very useful in clinical tissue engineering applications.