header advert
Results 21 - 28 of 28
Results per page:
Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 68 - 68
1 Jan 2016
Yang C Chang C Chen Y Chang C
Full Access

Introduction

Total knee arthroplasty [TKA] is a common procedure to relieve painful disability from advanced knee arthritis. However, related blood loss, ranging from 800 to 1200 ml, increase risk and disruption of recovery in anemic patients following TKA. Various methods for blood conservation had been proposed and examined. In the literature, the intra-articular administration of a solution mixing bupivacaine and epinephrine was commonly used after knee surgeries. Therefore, we conducted a retrospective, case controlled review of our primary TKAs to determine the hemostatic efficacy of this regimen following TKAs.

Material and Methods

Over a period of 12 months, 135 eligible patients were divided two groups simply according to the intra-articular injection or not: a control group (N=63) and a treatment group (N=72). In the treatment group, a 40 ml vial of 0.5% bupivacaine with epinephrine 1: 200000 was given prior to the deflation of pneumatic tourniquet. No drainage was used in all TKAs. Without recordable drainage, a Gross formula, considering gender and body composition, was used for estimate blood loss following TKAs. In addition, serial changes in hemoglobin as well as the requirement of allogenic transfusion were also compared between groups.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 72 - 72
1 Jan 2016
Chen Y Chang C Chang H Chang C Lin Y
Full Access

Cannulated screw is commonly used in the fixation of proximal femoral neck fractures. In the literature, several configurations had been proposed for best mechanical support with clinical experiences or biomechanical tests. Although screws in triangle configuration contribute certain fixation stability, but sometimes the surgeons made their own choices have to conduct another fixation pattern for some factors such as fracture type, economic issues, and so on. Therefore the aim of this study is to analyze the mechanical responses of a fractured femur fixed with screws in different configurations, screw materials and screw diameters with finite element method, trying to find the most stable construct.

A solid femur model was built from the CT images of a standard saw bone. Three fracture types of the femoral neck were created according to Pauwel's classification (30?, 50?, 70?) by CAD software. The models of implanted screws were built according to a commercial cannulated screw (Stryker Osteosynthesis, Schoenkirchen/Kiel, Germany) with diameter 6.5mm and 4.5mm by CAD software, too. Three fixation configurations were analyzed in this study, including triangle with superior single screw with titanium diameter 6.5mm, triangle with inferior single screw with diameter 6.5mm and diamond with four stainless screw diameter 4.5mm (fig.1). Totally there were nine models constructed in this study, and all of them were then imported into ANSYS WORKBENCH v14 (Swanson Analysis, Houston, PA, USA) to mesh and further analysis. 700N vertical downward force was applied on the femur head and the distal end of femur shaft was totally fixed.

The triangle fixation with superior single screw resulted in a best stability, but the fracture fixed with screws in a diamond configuration has least fracture gap. The difference of the maximum displacement of the femur head with Pauwel's classification 70?between triangle fixation with superior single screw and diamond configuration is only 0.03mm (1.72–1.69 mm). In most unstable femoral neck fracture [Pauwel's classification 70], the maximum gap distance is 0.59mm under the diamond configuration, while it is 0.63mm as the fracture fixed with a triangle configuration.

Therefore, this study suggests that four 4.5mm stainless screws in a diamond configuration is an alternative for proximal femur fracture once 6.5mm titanium screws are not available.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 347 - 347
1 Dec 2013
Higa M Chang C Roche C Struk A Farmrer K Wright T Banks S
Full Access

Introduction

Persistent problems and relatively high complication rates with reverse total shoulder arthroplasty (RTSA) are reported (1, 2). It is assumed that some of these complications are affected by improper intraoperative soft tissue tension. Achieving proper intraoperative soft tissue tension is an obvious surgical goal. However, intraoperative soft tissue tension measurements and methods for RTSA have not been reported. One way to quantify soft tissue tension is to measure intraoperative joint forces using an instrumented prosthesis. Hence, we have developed an instrumented RTSA to measure shoulder joint forces intraoperatively. The goal of this study was to measure intraoperative shoulder joint forces during RTSA.

Materials and Methods

The instrumented shoulder prosthesis measures the contact force vector between the glenosphere and humeral tray. This force sensor is a custom instrumented trial implant that can be used with an existing RTSA system (EQUINOXE, Exactech Inc, Gainesville, FL) just as a standard trial implant is used. Four uniaxial foil strain gauges (QFLG-02-11-3LJB, Tokyo Sokki Kenkyujo Co., Ltd., JP) are instrumented inside the sensor. Using a calibration matrix, the three force components were calculated from four strain gauge outputs (3).

Sixteen patients who underwent RTSA took part in this IRB approved study. All patients were greater than 50 years of age and willing to review and sign the study informed consent form. After obtaining informed consent for surgery, a standard deltopectoral approach to the shoulder was performed. The instrumented trial prostheses were assembled on the glenoid baseplate instead of a standard glenosphere. After the joint was reduced, joint forces were recorded during cyclic rotation, flexion, scapular plane movement (scaption), and adduction of the shoulder. Strain gauge outputs were recorded during these movements as well as the neutral position just before movements. Mean values of forces with each motion were compared by one-way analysis of variance (ANOVA). A multiple comparisons test was subsequently performed to examine differences between motions.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 4 | Pages 479 - 483
1 Apr 2011
Chang C Lai K Yang C Lan S

Between April 2004 and July 2007, we performed 241 primary total knee replacements in 204 patients using the e.motion posterior cruciate-retaining, multidirectional mobile-bearing prosthesis. Of these, 100 were carried out using an image-free navigation system, and the remaining 141 with the conventional technique. We conducted a retrospective study from the prospectively collected data of these patients to assess the early results of this new mobile-bearing design.

At a mean follow-up of 49 months (32 to 71), 18 knees (7.5%) had mechanical complications of which 13 required revision. Three of these had a peri-prosthetic fracture, and were removed from the study. The indication for revision in the remaining ten was loosening of the femoral component in two, tibiofemoral dislocation in three, disassociation of the polyethylene liner in four, and a broken polyethyene liner in one. There were eight further mechanically unstable knees which presented with recurrent disassociation of the polyethylene liner. There was no significant difference in the incidence of mechanical instability between the navigation-assisted procedures (8 of 99, 8.1%) and the conventionally implanted knees (10 of 139, 7.2%).

In our view, the relatively high rate of mechanical complications and revision within 30 months precludes the further use of new design of knee replacement.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 128 - 128
1 Mar 2010
Kwon S Kang Y Chang C Seong S Kim T
Full Access

In a previous study, we found that pre-TKA patients were severely disabled in high-flexion activities but perceived these disabilities as being no more important than pain relief and the restoration of daily routine activities. This study was conducted to investigate functional disabilities and patient satisfaction in Korean patients after TKA.

Of 387 patients who had undergone TKA with a follow-up longer than 12 months, 270 (69.7%) completed a questionnaire designed to evaluate functional disabilities, perceived importance and patient satisfaction.

The top 5 severe functional disabilities were difficulties in kneeling, squatting, sitting with legs crossed, sexual activity, and recreational activities. The top 5 in order of perceived importance were difficulties in walking, using a bathtub, working, climbing stairs, and recreation activities. Severities of functional disabilities were not found to be correlated with perceived importance. The patients (8.5%) dissatisfied with their replaced knees had more severe functional disabilities than the satisfied for most activities. The dissatisfied patients tended to perceive functional disabilities in high-flexion activities to be more important than the satisfied.

This study indicates that despite severe disabilities in high-flexion activities, most Korean patients after TKA would not consider high-flexion disability to be more important than other daily routine activities. Moreover, postoperative high-flexion disabilities would not adversely influence satisfaction for most patients. Nevertheless, such disabilities are likely to cause dissatisfaction among those that are not prepared to modify their traditional life-styles.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 126 - 126
1 Mar 2010
Chung B Kang Y Chang C Kim S Seong S Kim T
Full Access

Despite the well-documented improvement in coronal alignment achieved by computer assisted navigation, varying results have been reported for sagittal alignment. Current navigation systems rely on a sagittal femoral mechanical axis identified by the navigation system, but little information is available on the relationship between the sagittal mechanical axis and anatomical axes for intra-operative or postoperative radiographic assessments. We asked whether deviations exist between sagittal femoral mechanical axis and anatomical axes and attempted to identify predictors of the deviations found.

In 100 consecutive patients (200 knees) undergoing TKA, angles between two anatomical axes (the anterior cortical line and mid-medullary line) and two sagittal mechanical axes identified by current navigation systems were measured as proxies of the deviations between them on true lateral radiographs of the whole femur. Correlation analyses and multivariate regression were carried out to identify predictors of deviations.

Significant deviations existed with wide ranges between the anatomical axes and the sagittal mechanical axes. Degree of femoral bowing and femoral length were found to be predictors of deviations between sagittal femoral mechanical axes and anatomical axes.

This study suggests that surgeons applying navigation technology to TKA need to consider deviations between the sagittal femoral mechanical axes and anatomical axes when they intend to place a femoral component at a target sagittal orientation with respect to an anatomical reference.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 158 - 158
1 Mar 2010
Shao C Chang C Yang C
Full Access

Achieving precise component alignment of total knee arthroplasty produces good clinical outcome. However, the cutting errors between planed and final bone resection planes during the procedure of total knee arthroplasty were less evaluated. The aim of this study was to evaluate the cutting errors during total knee arthroplasty using the navigation system.

In a prospective series of 60 total knee replacements with image-free navigation system, the planed resection plane and final resection plane in frontal and sagittal planes were evaluated. The cutting errors standard deviations ranged from 1.01° to 1.21° in final frontal femoral and tibia plane and 1.23° in final sagittal femoral and tibia plane. The cutting errors showed only significant difference in the sagittal plane of femoral resection and only 9 cuts (4%) 3 of all plane and the maximal error was 4 in only 2 cases (0.8%).

Our results support to use the navigation system to adjust the cutting block and correct the cutting errors. This would lead to a more precise cut and result in better leg alignment and component orientation than the conventional TKR technique.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 125 - 125
1 Mar 2010
Kim T Kang Y Chang C Chung B Cho H Seong S
Full Access

Application of computer assisted navigation (CAN) has been documented to improve the accuracy of limb alignment and implant positioning. However, a recent study reported that a great deal of disparities occurred between the radiographic and navigational measurements calling the basic argument for application of CAN to TKA into question. In the authors’ practice using CAN for TKA, we have observed consistent disparities between the preoperative radiographic assessments and intraoperative navigational assessments of limb alignment in the coronal plane. A large disparity between radiographic and navigational assessments of limb alignment would be presenting a challenging question whether or not the surgeon can rely on the information provided by the CAN system. We developed a novel method to measure the coronal limb alignment and have found that the radiographic measurements with the novel method remarkably reduce the disparities between the radiographic and navigational assessments of the coronal limb alignment. This study was conducted to document the existence of the disparities between the radiographic and navigational assessments of the limb alignment and the value of our novel method to perform preoperative radiographic measurements of limb alignment.

In 107 TKAs performed using a CAN system (Ortho-pilot: B. Braun-Aesculap, Tuttlingen, Germany), radiographic assessments of coronal limb alignment were assessed using preoperative and postoperative whole limb radiographs taken with weight bearing with two different methods: a standard method, angle between the femoral mechanical axis (the line connecting hip center and the top pint of the femoral intercondylar notch) and a tibial mechanical axis (the line connecting the mid-point between the medial and lateral tibial eminences and the mid-point of the talus dome) and a novel method, the angle between the weight loading line (the line connecting the hip center and the mid-point of the talus dome) and the tibial mechanical axis. A negative value was given to a varus alignment and a positive value to the valgus alignment. During surgery, the coronal limb alignment was measured by the navigation system two different time-points: after registration and after implantation of prostheses. The disparity between the radiographic and navigational assessments was calculated with subtracting the radiographic assessments by the navigational assessments.

The disparity between the radiographic and navigational assessments was significantly smaller with the novel method than with the standard method. The mean difference between the radiographic and navigational assessments of preoperative limb alignment was −6.5o (range: −19 ~ 1) with the standard method and −0.9o (range: −8o to 4o) with the novel method. The mean difference between the radiographic and navigational assessments of the postoperative limb alignment was −1.96 (range: −11 ~ 3) with the standard method and −1.3 (range: −6 ~3).

This study documents that a wide range of disparities occurs between the radiographic and navigational assessments of limb alignment and the amount of disparity occurs in preoperative assessments. Our findings indicate that our novel method to perform the radiographic assessments of limb alignment can be a useful tool to interpret the information intraoperatively given by the navigation system.