header advert
Results 1 - 5 of 5
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 102 - 102
10 Feb 2023
White J Wadhawan A Min H Rabi Y Schmutz B Dowling J Tchernegovski A Bourgeat P Tetsworth K Fripp J Mitchell G Hacking C Williamson F Schuetz M
Full Access

Distal radius fractures (DRFs) are one of the most common types of fracture and one which is often treated surgically. Standard X-rays are obtained for DRFs, and in most cases that have an intra-articular component, a routine CT is also performed. However, it is estimated that CT is only required in 20% of cases and therefore routine CT's results in the overutilisation of resources burdening radiology and emergency departments. In this study, we explore the feasibility of using deep learning to differentiate intra- and extra-articular DRFs automatically and help streamline which fractures require a CT.

Retrospectively x-ray images were retrieved from 615 DRF patients who were treated with an ORIF at the Royal Brisbane and Women's Hospital. The images were classified into AO Type A, B or C fractures by three training registrars supervised by a consultant. Deep learning was utilised in a two-stage process: 1) localise and focus the region of interest around the wrist using the YOLOv5 object detection network and 2) classify the fracture using a EfficientNet-B3 network to differentiate intra- and extra-articular fractures.

The distal radius region of interest (ROI) detection stage using the ensemble model of YOLO networks detected all ROIs on the test set with no false positives. The average intersection over union between the YOLO detections and the ROI ground truth was Error! Digit expected.. The DRF classification stage using the EfficientNet-B3 ensemble achieved an area under the receiver operating characteristic curve of 0.82 for differentiating intra-articular fractures.

The proposed DRF classification framework using ensemble models of YOLO and EfficientNet achieved satisfactory performance in intra- and extra-articular fracture classification. This work demonstrates the potential in automatic fracture characterization using deep learning and can serve to streamline decision making for axial imaging helping to reduce unnecessary CT scans.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 63 - 63
1 Nov 2021
Visscher L White J Tetsworth K McCarthy C
Full Access

Introduction and Objective

Malunion after trauma can lead to coronal plane malalignment in the lower limb. The mechanical hypothesis suggests that this alters the load distribution in the knee joint and that that this increased load may predispose to compartmental arthritis. This is generally accepted in the orthopaedic community and serves as the basis guiding deformity correction after malunion as well as congenital or insidious onset malalignment. Much of the literature surrounding the contribution of lower limb alignment to arthritis comes from cohort studies of incident osteoarthritis. There has been a causation dilemma perpetuated in a number of studies - suggesting malalignment does not contribute to, but is instead a consequence of, compartmental arthritis. In this investigation the relationship between compartmental (medial or lateral) arthritis and coronal plane malalignment (varus or valgus) in patients with post traumatic unilateral limb deformity was examined. This represents a specific niche cohort of patients in which worsened compartmental knee arthritis after extra-articular injury must rationally be attributed to malalignment.

Materials and Methods

The picture archiving system was searched to identify all 1160 long leg x ray films available at a major metropolitan trauma center over a 12-year period. Images were screened for inclusion and exclusion criteria, namely patients >10 years after traumatic long bone fracture without contralateral injury or arthroplasty to give 39 cases. Alignment was measured according to established surgical standards on long leg films by 3 independent reviewers, and arthritis scores Osteoarthritis Research Society International (OARSI) and Kellegren-Lawrence (KL) were recorded independently for each compartment of both knees. Malalignment was defined conservatively as mechanical axis deviation outside of 0–20 mm medial from centre of the knee, to give 27 patients. Comparison of mean compartmental arthritis score was performed for patients with varus and valgus malalignment, using Analysis of Variance and linear regression.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_9 | Pages 15 - 15
1 May 2018
Bhangoo N White J Howard P
Full Access

Aims

Thromboprophylaxis following Total Hip Replacement (THR) surgery remains controversial, balancing VTE prevention against wound leakage and subsequent deep infection.

We analysed the 90 day cause of death post THR in our institution after the implementation of new thromboprophylactic policy of low dose aspirin for low risk patients, as part of a multimodal regime. Those at high risk were anticoagulated.

Patients and methods

The PAS database was used to identify patients undergoing primary THR between January 2012 and June 2017 at The Royal Derby Hospital, and all deaths within 90 days. Trauma cases were excluded. Case note review and Coroner's verdict were utilised to ascertain cause of death. Results were compared to a previous study at the same institution prior to the introduction of the new policy, where thromboprophylaxis was decided upon by surgeon preference for either LMWH, aspirin or warfarin.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXIV | Pages 16 - 16
1 Jul 2012
White J Ahir S Hua J
Full Access

Hip resurfacing arthroplasty is emerging as an increasingly popular, conservative option for the treatment of end-stage osteoarthritis in the young and active patient. Despite the encouraging clinical results of hip resurfacing, aseptic loosening and femoral neck fracture remains concerns for the success of this procedure.

This study used finite element analysis (FEA) to analyse the stresses within proximal femoral bone resulting from implantation with a conservative hip prosthesis. FEA is a computational method used to analyse the performance of real-world structures through the development of simplified computational models using essential features.

The aim of this study was to examine the correlation between the orientation of the femoral component of a hip resurfacing prosthesis (using the Birmingham Hip Resurfacing as a model) and outcomes during both walking and stair climbing. The outcomes of interest were stresses in the femoral neck predisposing to fracture, and bone remodelling within the proximal femur.

Multiple three-dimensional finite element models of a resurfaced femur were generated, with stem-shaft angles representing anatomic (135°), valgus (145°), and varus (125°) angulations. Applied loading conditions included normal walking and stair climbing. Bone remodelling was assessed in both the medial and lateral cortices.

Analyses revealed that amongst all orientations, valgus positioning produced the most physiological stress patterns within these regions, thereby encouraging bone growth. Stress concentration was observed in cortical and cancellous bone regions adjacent to the rim of the prosthesis. As one would expect, stair climbing produced consistently higher stress than walking. The highest stress values occurred in the varus-orientated femur during both walking and stair climbing, whilst anatomic angulation resulted in the lowest stress values of all implanted femurs in comparison to the intact femur.

This study has shown through the use of FEA that optimising the stem-shaft angle towards a valgus orientation is recommended when implanting a hip resurfacing arthroplasty. This positioning produces physiological stress patterns within the proximal femur that are conducive to bone growth, thus reducing the risk of femoral neck fracture associated with conservative hip arthroplasty.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 3 - 3
1 Mar 2010
White J Herzog A Bergersen E Snitzer J Decker J Vanderby R Stampfli HF Kaplan L
Full Access

Purpose: Damage to articular cartilage leads to an incomplete healing response. This has elicited interest in improving the understanding of chondrocyte biology and finding ways to stimulate a more effective repair response. Neuropeptides play a role in the proliferative and reparative processes of many tissue types, but little is known about their effects on articular cartilage. This research aimed to investigate the effect of four neuropeptides on articular chondrocytes.

Method: Bovine chondrocytes were cultivated in monolayer culture in media alone or media containing one of four neuropeptides: NPY, CGRP, SP, and VIP. Enzymatically digested chondrocytes from the articular surface of the femoral trochlea, femoral condyles, and patella of freshly slaughtered veal (n=8) were plated at 1×10^5 cells/mL in DMEM complete media with 5% FCS. Proliferation and proteoglycan assays were conducted at days 2,4,6, and 8.

Results: Substance P showed a statistically significant stimulatory effect on chondrocyte proliferation and proteoglycan production that was greatest at a concentration of 5 μg/ml. NPY and VIP showed a dose dependent suppressive effect on chondrocyte proliferation that was greatest at their highest concentrations and was significant at all time points, with the exception of VIP at day 2. CGRP showed no significant effect on proliferation or proteoglycan production.

Conclusion: Substance P showed a reliable stimulation of chondrocyte proliferation and proteoglycan production while NPY and VIP showed dose-dependent depressive effects. These findings support the idea that the peripheral nervous system, through neuropeptides, exerts direct influence on articular chondrocytes. This may provide some insight into the pathophysiology of inflammatory and degenerative arthritis and provide targets for modifying the repair response of articular cartilage.