header advert
Results 1 - 5 of 5
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_12 | Pages 53 - 53
1 Oct 2018
Walker PS Einhorn T Schwarzkopf R Hooper J Werner J Fernandez E
Full Access

Introduction

In major orthopaedic departments, typically several total knee systems are used. Each system requires several sets of instruments, each set with many trays of complicated and expensive parts. The logistics and costs of maintainance are considerable. Our overall goal is to investigate the feasibility of autoclavable single-use 3D printed instruments made from a polymeric material, used for any type of total knee design. The procedure will be standardized and adjustments easy to implement. Each set will be packaged individually, and used for a single case. There are many aspects to this study; in this part, the aims are to identify suitable materials for autoclavability and strength, and then to compare the accuracy of a novel design of 3D printed tibial cutting guide with a current metallic guide.

Methods

Test samples were designed to simulate shapes in current instruments, such as mating pegs and holes, threaded screws, and slotted blocks. Each set was produced in biocompatible materials, ABS-M30i, VeroClear (MED610), Ultem1010, and Nylon 12. Each part was laser scanned, and then imaged virtually using a reverse engineering software (GeoMagic). Manual measurements of key dimensions were also made using calipers. The parts were autoclaved using a standardized protocol, 30 minutes at 250° F. All parts were re-scanned and measured to determine any changes in dimensions. To test for strength and abrasion resistance, the slotted blocks were pinned to sawbones model tibias, and an oscillating saw used to cut through the slot. A compact 3D printed tibial cutting guide was then designed which fitted to the proximal tibia and allowed varus-valgus, tibial slope and height adjustments. A small laser attached to the guide projected to a target at the ankle. Tests were made on 20 sawbones, and compared with 20 with a standard metal cutting guide. Digitization was used to measure the angles of the cuts.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_20 | Pages 75 - 75
1 Dec 2017
Meere PA Salvadore G Chu L Walker PS
Full Access

INTRODUCTION

Soft tissue balancing in knee arthroplasty remains an art. To make it a science reliable quantification and reference values for soft tissue tension and contact loads are necessary. This study intends to prove the concept of a compartmental load safe target zone as a clinical tool for balancing total knee arthroplasties by studying the relationship between post- balancing compartmental load distribution and patient satisfaction at 6 months.

MATERIALS AND METHODS

In this prospective non-randomised clinical series of 102 patients (110 knees), medial and lateral loads were recorded intra-operatively using a tibial liner load sensor system. All knees were balanced using specific algorithm sequences with a goal of equal distribution between compartments. A safe target zone area was defined on a scatterplot graph displaying lateral versus medial loads. Individual points on the graft were coded with their satisfaction score at 6 months.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVI | Pages 11 - 11
1 Apr 2012
Muirhead-Allwood S Sandiford NA Skinner JA Hua J Walker PS
Full Access

We present the medium to long term clinical results of 112 Uncemented custom Computer Assisted Design Computer Assisted Manufactured (CAD-CAM) total hip arthroplasties performed between 1992 and 1998 in 111 patients. Fifty three males and 58 females were included. Mean age was 46.2 years (range 24.6yrs - 62.2 yrs). Average duration of follow up was 156 months (120 – 204 months). The mean Harris Hip Score (HHS) improved from 42.4 to 90.3, mean Oxford Hip Score (OHS) improved from 43.1 to 18.2 and the mean WOMAC hip score improved from 57.0 to 11.9. There was 1 revision due to failure of the acetabular components but there were no failures of the femoral components. There were no revisions for aseptic loosening. The worst case survival in this cohort of custom femoral components at an average 13 year follow up (range 10-17 years) was 98.2% (95% Confidence interval 95% to 99%). Survival of the femoral component alone was 100%.

These results are comparable with the best medium to long term results for femoral components used in primary total hip arthroplasty (THA) with any means of fixation.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 416 - 416
1 Nov 2011
Walker PS Cleary DJ Heller Y Yildirim G
Full Access

The objective was to develop a simple, rapid, and low-cost method for evaluating proposed new Total Knee (TKA) designs, and then to use the method to evaluate three different TKA models with different kinematic characteristics. In a previous study, we reported on the use of an Up-and-Down Crouching Machine, where the neutral path of motion for knee specimens were measured, and then TKR models were implanted and the tests repeated. These experiments showed that standard CR and PS designs behaved more like an ACL deficient knee, whereas Guided Motion knees produced motion similar to that of the intact specimens. However the method was time consuming, technically demanding, and expensive, and hence is suitable for designs which had already passed through a screening method. The latter was the subject of this present study, called the Desktop TKR Test Machine.

The principle of the testing protocol on the machine, called Holistic Testing, was that a spectrum of compressive, shear and torque forces were applied to a knee, to represent a complete spectrum of daily and sporting activities. The resulting femoraltibial positions were measured, both the Neutral Path of Motion and the Laxity about the neutral path. The motions were displayed as both the motion of the transverse femoral axis on the tibial surface, and by the centers of the lateral and medial contact patches.

Eight knee specimens were tested first, to act as a reference target for evaluating TKR models. Knee models were designed in the computer and made in a hard low-friction plastic using SLA and stereolithography.

A typical Posterior-Stabilized (PS) TKA did not display the normal external femoral rotation with flexion, and also showed abnormal anterior sliding on the medial side prior to cam-post engagement. Guided Motion designs included a Medial Pivot type, and a Medial Pivot with a cam-post. Both of these had a dished medial side and a shallow lateral side, to more accurately reproduce anatomic motion characteristics. The guidedmotion design with the cam-post produced a neutral path and laxity more similar to that of normal.

It was concluded that the test method satisfied the objective in terms of being a useful test method for rapid evaluation of new proposed TKR designs. The method was able to identify designs which showed motion and stability characteristics closer to the normal anatomic knee.


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_I | Pages 166 - 166
1 Mar 2008
Barrera OA Haider H Walker PS Sekundiak TD Garvin KL
Full Access

Most navigation systems for TKR help in the alignment of bulky cutting jigs. We hypothesized that TKR bone cutting could be done free hand without cutting jigs, by navigating a bone saw directly. This would allow smaller incisions, faster recovery time and simpler procedures. The goal of this study was to evaluate the results of free-hand cutting by using in-house developed CAOS software against cuts with traditional jigs.

Experiments were carried out on the five planar cuts of the TKR distal femur, using first the conventional cutting jig and then freehand. The Freehand cutting system navigated and displayed 3D realistic models of the saw, the bone and the planes along which the blade should be orientated. Two experienced arthroplasty surgeons and one engineer performed the experiments on 18 identical synthetic femurs. Each performed one using jigs and five freehand. The experiments were timed and > 50 direct measurements were made for each (cut) bone with a computer digitizer, digital caliper and protractor to assess their quality.

Surgeon’s comments, qualitative and quantitative assessments of the cuts proved the concept’s feasibility and its encouraging potential. The engineer’s time improvement with freehand navigation has implications for easier TKR for trainee surgeons.