header advert
Results 1 - 2 of 2
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_II | Pages 131 - 131
1 May 2011
Seeger J Haas D Aldinger P Jaeger S Bruckner T Clarius M
Full Access

Periprosthetic tibial plateau fractures (PTPF) represent a rare but serious complication in unicompartmental knee arthroplasty (UKA). Although excellent long-term results have been reported with cemented UKA, surgeons continue to be interested in cementless fixation. The aim of the study was to compare fracture loads of cementless and cemented UKA.

Tibial components of the Oxford UKA were implanted in six paired fresh-frozen tibiae. In one set surgery was performed with cement fixation and in the other cementless components were implanted. Loads were then applied under standardised conditions to fracture the specimens.

Mean loads of 3.6 (0.7–6.9) kN led to fractures in the cemented group, whereas the tibiae fractured in the cementless group with a mean load of 1.9 (0.2–4.3) kN (p< 0.05).

The loading capacity in tibiae with cementless components is significantly less compared to cemented fixation. Our results suggest that, patients with poor bone quality who are treated with a cementless UKA are at higher risk for periprosthetic fractures.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_IV | Pages 620 - 620
1 Oct 2010
Seeger J Aldinger P Bruckner T Clarius M Haas D Jäger S
Full Access

Background and Purpose: Periprosthetic tibial plateau fractures are a rare but serious complication of UKA. Since they usually appear perioperatively they can be associated with sawing defects during implantation. The aim of the study was to evaluate fracture loads and fracture patterns under particular consideration whether extended vertical saw cuts reduce the stability of the tibial plateau and increase the risk of periprosthetic tibial plateau fractures.

Material and Methods: In 6 matched paired fresh frozen tibiae (donor data: f/m = 2/4, mean age 81.2 years, mean weight 61.7kg) tibial implantation of the cemented Oxford Uni was performed in group A and with an extended vertical saw cut of 10° in group B in a randomized fashion. Before fracturing the tibiae with a maximum load of 10.0kN under standard conditions, DEXA bone density measurement and standard X-Ray were accomplished. After load induction fracture patterns and maximum fracture loads were analyzed and correlated to BMD, BMI, bodyweight (BW), age and surface area of the tibial implant.

Results: In group A a maximum load of Fmax = 3.912 (2.346–8.500) kN lead to fractures, whereas in group B all tibiae fractured with a mean load of Fmax = 2.622 (1.085–5.036) kN. The difference was statistically different with p=0.028. The induced fractures were similar to those observed in clinical practice.

Between BMI and the maximum fracture loads inducing tibial plateau fractures a significant correlation could be proven for all tibiae (r=0.643).

Discussion: The observed fracture pattern showed metaphyseal fractures similar to those observed in clinical practise. Extended vertical saw cuts weaken the bone structure and therefore raise the risk of medial tibial plateau fractures. In our study extended vertical saw cuts of 10° reduce maximum fracture loads about 30%.

We recommend special training and modified instruments for inexperienced surgeons to minimize the incidence of extended vertical saw cuts and to reduce the risk of periprosthetic fractures.