header advert
Results 21 - 40 of 73
Results per page:
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 34 - 34
1 Feb 2017
Bragdon C Barr C Nebergall A Rolfson O Troelsen A Rubash H Malchau H Greene M
Full Access

Introduction

In vitro studies showed that the anti-oxidative properties of vitamin E stabilize free radicals while retaining the mechanical strength of UHMWPE. The purpose was to evaluate vitamin E diffused polyethylene (VEPE) wear and stability of femoral components using RSA. Patient reported outcome measures (PROMs) were evaluated to determine the clinical outcome at 5 years.

Methods

48 patients (52 hips), with osteoarthritis, participated in a 5 year RSA study. Each patient received a VEPE liner, a porous titanium coated shell, and an uncemented stem with a 32mm head. Tantalum beads were inserted into the VEPE and the femur to measure head wear and stem stability using RSA. RSA and PROM follow-up was obtained postoperatively, 6 months, 1, 2, 3, and 5 years after surgery. The Wilcoxon signed-ranks test determined if changes in penetration or migration were significant (p≤0.05).


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 51 - 51
1 Feb 2017
Bragdon C Barr C Berry D Della Valle C Garvin K Johanson P Clohisy J Malchau H
Full Access

Introduction

The first highly crosslinked and melted polyethylene acetabular component for use in total hip arthroplasty was implanted in 1998 and femoral heads larger than 32mm in diameter introduced 2004.

The purpose of this study was to re-assemble a previous multi-center patient cohort in order to evaluate the radiographic and wear analysis of patients receiving this form of highly crosslinked polyethylene articulating against large diameter femoral heads at a minimum of 10 years follow-up.

Methods

Two centers contributed patients to this ongoing clinical study. Inclusion criteria for patients was: primary THR; femoral heads greater than 32mm; minimum 10 year follow-up. 69 hips have been enrolled with an average follow-up of 11.2 years (10–15), 32 females (50%). Wear analysis was performed using the Martell Hip Analysis software. Radiographic grading was performed on the longest follow-up AP hip films. The extent of radiolucency in each zone greater than 0.5mm in thickness was recorded along with the presence of sclerotic lines and osteolysis.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 52 - 52
1 Feb 2017
Bragdon C Barr C Berry D Della Valle C Garvin K Johanson P Clohisy J Malchau H
Full Access

Introduction

The first highly crosslinked and melted polyethylene acetabular component for use in total hip arthroplasty was implanted in 1998. Numerous publications have reported reduced wear rates and a reduction in particle induced peri-prosthetic osteolysis at short to mid-term follow-up.

The purpose of this study was to re-assemble a previous multi-center patient cohort in order to evaluate the radiographic and wear analysis of patients receiving this form of highly crosslinked polyethylene articulating against 32mm femoral heads or less at a minimum of 13 years follow-up.

Methods

Inclusion criteria for patients was a primary THR with femoral heads 32mm or less and a minimum 13 year follow-up. 139 hips have been enrolled with an average follow-up of 13.7 years (13–16), 80 females (57%). Wear analysis was performed using the Martell Hip Analysis software. Radiographic grading was performed on the longest follow-up AP hip films. The extent of radiolucency in each zone greater than 0.5mm in thickness was recorded along with the presence of sclerotic lines and osteolysis.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_11 | Pages 38 - 38
1 Jun 2016
Mohaddes M Cnudde P Malchau H Kärrholm J
Full Access

Introduction

Stem revision with retention of the old cement mantle (cement-in-cement revision) in cases with an intact cement/bone interface is an appealing option. There has been an increasing use of this technique. In 2014 this cement-in- cement technique was used in 10% of all stem revisions reported to the Swedish Hip Arthroplasty Register (SHAR). We analysed the outcome of cement-in-cement stem revisions reported to the SHAR during years 2001–2014

Patients/Materials & Methods

Since 2001 1292 cement-in-cement revisions (study group), performed with a short (≤150 mm) Exeter stem (n=973) or a Lubinus stem (n=319) were reported to the SHAR. Stem revisions, using short Exeter and Lubinus stems without the use of the cement-in-cement technique (n=2893) acted as the control group in this analysis. Both groups were comparable regarding primary diagnosis. In the study group there were more females and the mean age (73 years) was 2 year older (p<0.001). The primary outcome was re-revision due to all causes (n=413). Re-revision of the stem due to all causes, infections excluded (n=212) was used as secondary outcome. Survival analysis using Kaplan-Meier was performed.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_11 | Pages 41 - 41
1 Jun 2016
Mohaddes M Cnudde P Rolfson O Malchau H Kärrholm J
Full Access

Introduction

Dislocation as a primary cause of revision has been on the increase in Sweden (14% in 2014). The increasing use of Dual Mobility cups (DMC) could well be explained by the increased revision burden due to dislocation, patients undergoing revision having increased comorbidities and reports that dual articular cup designs reduce the risk of dislocation. The aim of this study was to analyze the change in utilization pattern of the dual articular designs used in acetabular revision surgery in Sweden. The short-term survival of DMC was compared to traditional designs.

Patients/Materials & Methods

During years 2004–2014, 1111 (925 cemented) revisions performed with a DMC design were reported to SHAR. About half (n=426) of these cases were first time revisions performed due to dislocation. During the same time period 520 dislocations were revised for dislocation using a standard cemented cup. There was no differences regarding the age, gender and primary diagnosis (p≥0.12) between the two groups. A second cup revision for all reasons and specifically for dislocation was used as end-point. Kaplan-Meier analysis was performed.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 154 - 154
1 May 2016
Zumbrunn T Varadarajan K Rubash H Malchau H Li G Muratoglu O
Full Access

INTRODUCTION

In native knees anterior cruciate ligament (ACL) and asymmetric shape of the tibial articular surface with a convex lateral plateau are responsible for differential medial and lateral femoral rollback. Contemporary ACL retaining total knee arthroplasty (TKA) improves knee function over ACL sacrificing (CR) TKA; however, these implants do not restore the asymmetric tibial articular geometry. This may explain why ACL retention addresses paradoxical anterior sliding seen in CR TKA, but does not fully restore medial pivot motion. To address this, an ACL retaining biomimetic implant, was designed by moving the femoral component through healthy in vivo kinematics obtained from bi-planar fluoroscopy and sequentially removing material from a tibial template. We hypothesized that the biomimetic articular surface together with ACL preservation would better restore activity dependent kinematics of normal knees, than ACL retention alone.

METHODS

Kinematic performance of the biomimetic BCR design (asymmetric tibia with convex lateral surface), a contemporary BCR implant (symmetric shallow dished tibia) and a contemporary CR implant (symmetric dished tibia) was analyzed using KneeSIM software. Chair-sit, deep knee bend, and walking were analyzed. Components were mounted on an average bone model created from magnetic resonance imaging (MRI) data of 40 normal knees. Soft-tissue insertions were defined on the average knee model based on MRI data, and mechanical properties were obtained from literature. Femoral condyle center motions relative to the tibia were tracked to compare different implant designs.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 158 - 158
1 May 2016
Graves S Lorimer M Bragdon C Muratoglu O Malchau H
Full Access

Introduction

Infection remains a serious complication following primary total hip arthroplasty (THA). Many factors including primary diagnosis, comorbidities and duration of procedure are known to influence the rate of infection. Although the association between patient and surgical factors is increasingly well understood, little is known about the role of the prosthesis. This analysis from the Australian Registry (AOANJRR) was undertaken to determine if revision for infection varied depending on the type of bearing surface used.

Methods

Three different bearing surfaces, ceramic on ceramic (CoC), ceramic on cross-linked polyethylene (CoXP) and metal on cross-linked polyethylene (MoXP) were compared. The study population included all primary THA undertaken for OA using these bearing surfaces and reported to the AOANJRR between 1999 and 2013. Kaplan-Meier survivorship curves were compiled with revision for infection as the end point. Hazard Ratios (HR) from Cox proportional hazards models were used to compare revision rates. Sub analysis examining the effect of age, gender, fixation of the femoral stem and femoral head size. To ensure there was no confounding due to differences in femoral and acetabular component selection a further analysis was undertaken which compared the three different bearings with the same stem and acetabular component combinations.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 15 - 15
1 May 2016
Varadarajan K Zumbrunn T Duffy M Patel R Freiberg A Malchau H Rubash H Muratoglu O
Full Access

Introduction

Dual Mobility (DM) implants have gained popularity for the treatment and prevention of hip dislocation, with increased stability provided by a large diameter mobile liner. However, distal regions of the liner can impinge on soft-tissues like hip capsule and iliopsoas, leading to anterior hip pain. Additionally, soft-tissue impingement may trap the mobile liner, leading to excessive loading of the liner rim, from engagement with the femoral stem, and subsequent intra-prosthetic dislocation. The hypothesis of this study was that reducing the liner profile below the equator (contoured design) can mitigate soft-tissue impingement without compromising inner-head pull-out resistance and overall hip joint stability (Fig. 1).

Methods

The interaction of conventional and contoured liners with anterior soft-tissues was evaluated in 10 cadaveric hips (5 specimens; 2 male, 3 female; age 65 ± 10 yrs; liner diameter 42–48mm) via visual observation and fluoroscopic imaging. A metal wire was sutured to the deep fibers of the iliopsoas tendon/muscle, and metal wires were embedded in the mobile liners for fluoroscopic visualization (Fig. 2). All soft-tissue except the anterior hip capsule and iliopsoas was removed, and a rope was attached to the iliopsoas to apply tension along its natural orientation.

Resistance to inner-head pull-out was evaluated via Finite Element Analysis (FEA) by simulating a full cycle of insertion of the inner head into the mobile liner and subsequent pullout. The femoral head, acetabular shell, and stem were modeled as rigid, while the mobile liner was modeled as plastically deformable. Hip joint stability was evaluated by dynamic simulations in for two dislocation modes: (A) Posterior dislocation (at 90° hip flexion) with internal hip rotation; (B) Posterior dislocation (starting at 90° flexion) with combined hip flexion and adduction. A 44 mm diameter conventional and a 44 mm contoured liner were evaluated during these tests.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 122 - 122
1 May 2016
Patel R Zumbrunn T Varadarajan K Freiberg A Rubash H Muratoglu O Malchau H
Full Access

Introduction

Dual-mobility (DM) liners have increased popularity due to the range of motion and stability provided by these implants. However, larger head diameters have been associated with anterior hip pain, due to surrounding soft-tissue impingement, particularly the iliopsoas. To address this, an anatomically contoured dual mobility (ACDM) liner was designed by reducing the volume of the liner below the equator (Fig1). Previous cadaver studies have shown that the ACDM significantly reduces iliopsoas tenting and trapping of the liner compared to conventional designs. We created a finite element study based on previous cadaver testing to further analyze the effectiveness of the ACDM design in reducing soft-tissue impingement, specifically the tendon-liner contact pressure and the tendon stress.

Methods

The finite element model was developed within COMSOL 4.3b. The psoas tendon was modelled as a Yeoh hyper-elastic Material, which uses 3 constants (c1-c3), density (1.73g/cm3) and a bulk modulus (26GPa)[Hirokawa,2000]. In a previous, separate study, the average stiffness of 10 psoas tendon samples (5 cadavers), were measured to be 339[N/mm] in the linear region with average width and thickness of 14mmX4mm. The 3 constants were tuned to match experimental uniaxial test data, and were 5[GPa], 0[Gpa], and 46[GPa] for c1, c2, and c3 respectively.

The implant components were rigidly modeled relative to the psoas. Cadaver specific CT models were used to create the FEA geometry. The insertion points for the Psoas were digitally determined on the proximal end of the lesser trochanter, and the psoas notch on the pelvis for hip flexion angles of −15°, 0°, 15° and 30°. These insertion points determined the length of the psoas and its relative position to the femoral head in 3D. The specific liner size and position for each cadaver was determined by implant planning with the CT models. In this abstract, we only present data for 2 specimens (left/right hips) with 44mm conventional DM, and 44mm ACDM, matching specimen anatomy. A 500N tensile load was applied to the psoas tendon proximally to simulate moderate physiological loading, the average/max stresses and contact pressures between the psoas and the two liner designs were determined.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 80 - 80
1 May 2016
Nebergall A Freiberg A Greene M Malchau H Muratoglu O Rowell S Zumbrunn T Varadarajan K
Full Access

Introduction

The large diameter mobile polyethylene liner of the dual mobility implant provides increased resistance to hip dislocation. However, a problem specific to the dual mobility system is intra-prosthetic dislocation (IPD), secondary to loss of the retentive rim, causing the inner head to dissociate from the polyethylene liner. We hypothesized that impingement of the polyethylene liner with the surrounding soft-tissue inhibits liner motion, thereby facilitating load transfer from the femoral neck to the liner and leading to loss of retentive rim over time. This mechanism of soft-tissue impingement with the liner was evaluated via cadaver experiments, and retrievals were used to assess polyethylene rim damage.

Methods

Total hip arthroplasty was performed on 10 cadaver hips using 3D printed dual mobility components. A metal wire was sutured to the posterior surface (underside) of the iliopsoas, and metal wires were embedded into grooves on the outer surface of the liner and inner head to identify these structures under fluoroscopy. Tension was applied to the iliopsoas to move the femur from maximum hyperextension to 90° of flexion for the purpose of visualizing the iliopsoas and capsule interaction with the mobile liner. The interaction of the mobile liner with the iliopsoas was studied using fluoroscopy and direct visual observation. Fifteen retrieved dual mobility liners were assessed for rim edge and rim chamfer damage. Rim edge damage was defined as any evidence of contact, and rim chamfer damage was classified into six categories: impact ribs on the chamfer surface, loss of machining marks, scratching or pitting, rim deformation causing a raised lip, a rounded rim edge, or embedded metal debris.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 155 - 155
1 May 2016
Zumbrunn T Malchau H Rubash H Muratoglu O Varadarajan K
Full Access

INTRODUCTION

In native knees the anterior cruciate ligament (ACL) plays a major role in joint stability and kinematics. Sacrificing the ACL in contemporary total knee arthroplasty (TKA) is known to cause abnormal knee motion, and reduced function. Hence, there is growing interest in the development of ACL retaining TKA implants. Accommodation of ACL insertion around the tibial eminence is a challenge with these designs. Therefore, a reproducible and practical test setup is necessary to characterize the strength of the ACL/bone construct in ACL retaining implants. Seminal work showed importance of loading the ACL along its anatomical orientation. However, prior setups designed for this purpose are complex and difficult to incorporate into a standardized test for wide adoption. The goal of this study was to develop a standardized and anatomically relevant test setup for repeatable strength assessment of ACL construct using basic force-displacement testing equipment.

METHODS

Cadaver knees were positioned with the ACL oriented along the loading axis and being the only connection between femur and tibia. 15° knee flexion was selected based on highest ACL tensions reported in literature. Therefore, the fixtures were adjusted accordingly to retain 15° knee flexion when the ACL was tensioned. The test protocol included 10 cycles of preconditioning between 6N and 60N at 1mm/s, followed by continuous distraction at 1mm/s until failure (Fig. 1). Eleven cadaveric knees (4 male, 7 female; 70.9 yrs +/−13.9 yrs) were tested using this setup to characterize a baseline ACL pullout strength (peak load to failure) in native knees.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 63 - 63
1 Jan 2016
Varadarajan KM Zumbrunn T Duffy M Rubash HE Malchau H Freiberg A Muratoglu O
Full Access

Introduction

Dual Mobility (DM) implants have gained popularity for the treatment and prevention of hip dislocation, with increased stability provided by a large diameter mobile insert. However, distal regions of the insert may impinge on soft tissues like the iliopsoas, leading to groin pain. Additionally, soft-tissue impingement may trap the mobile insert, leading to excessive loading of the insert rim from engagement with the femoral neck and subsequent intra-prosthetic dislocation. To address this, an Anatomically Contoured Dual Mobility (ACDM) insert with a soft-tissue friendly distal geometry was developed (Fig.1). Previously, the ACDM insert was shown to maintain the femoroacetabular contact area and joint stability of a conventional DM insert [Duffy et al. BJJ 2013, 95-B:34, p298; Zumbrunn et al. BJJ 2013, 95-B:34, p605]. The goal of this study was to utilize cadaver specimens to verify whether the ACDM insert could reduce soft-tissue impingement relative to a conventional DM insert.

Methods

Fluoroscopic imaging was used to evaluate soft-tissue interaction with ACDM and conventional DM inserts in four cadaver hips (Fig. 2). A metal wire was sutured to the deep fibers of the iliopsoas muscle/tendon, and metal wires were embedded in the inner head and the mobile insert for fluoroscopic visualization. All soft tissue except the anterior hip capsule and iliopsoas were removed, and a rope was attached to the iliopsoas to apply tension along its native orientation. A femoral stem and a DM acetabular shell were implanted sothe ACDM or conventional DM inserts, together with the inner heads, could be inserted. Fluoroscopic images of the hip joint were taken at maximum hyperextension, 0°, 15° and 30° hip flexion with the insert positioned in neutral and anteverted orientations (Fig. 2). Neutral orientation corresponded to the insert axis parallel to the femoral neck, while anteverted orientation corresponded to a flexed insert that contacted the femoral neck posteriorly.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 82 - 82
1 Jan 2016
Nebergall A Greene M Sillesen N Rubash HE Kwon Y Malchau H
Full Access

Introduction

Osteolysis caused by wear of the ultrahigh molecular weight polyethylene (UHMWPE) often leads to failure. Cross-linking improves wear, but also produces residual free radicals that decrease oxidative stability. In vitro studies have shown that the anti-oxidative properties of vitamin E UHMWPE stabilize free radicals while retaining the physical and chemical properties of UHMWPE. The porous surface of the Regenerex™ shell was developed for improved bone in-growth fixation. The increased porosity of the Regenerex™ shell promotes early bony in-growth with the goal of greater long-term stability. The purpose of this study was to evaluate vitamin E infused polyethylene (VEPE) wear and stability of acetabular and femoral components using RSA.

Methods

58 patients (64 observed hips), all with osteoarthritis, gave informed consent to participate in a 5 year RSA study. Each patient received a VEPE liner, a Regenerex™ acetabular shell, and an uncemented stem with either a 32mm or 36 mm cobalt chrome femoral head. Tantalum beads were inserted into the VEPE, the pelvic and the femoral bone to measure head penetration into the polyethylene, and shell and stem stability over time, using RSA. RSA radiographs were scheduled immediately postoperatively (up to 6 weeks) and 6 months, 1, 2, 3, and 5 years after surgery. The Wilcoxon signed-ranks nonparametric test was used to determine if changes in penetration or migration were significant over time at p≤0.05.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 62 - 62
1 Jan 2016
Varadarajan KM Zumbrunn T Duffy M Rubash HE Malchau H Muratoglu O
Full Access

Introduction

In Cruciate Retaining (CR) Total Knee Arthroplasty (TKA), the Posterior Cruciate Ligament (PCL) is preserved but the Anterior Cruciate Ligament (ACL) is sacrificed. In contemporary CR implants, failure to substitute for ACL function causes abnormal knee motion, with the femur being located excessively posterior on the tibia in full extension (Fig. 1), and sliding forward during early flexion. To address this kinematic abnormality, we developed an ACL Substituting Cruciate Retaining (ASCR) TKA implant that substitutes for the absent ACL, while preserving the native PCL. The ASCR tibia includes an ACL substituting post that engages the intercondylar notch of the femoral component in low flexion to act for the missing ACL (Fig. 1). With continued flexion, the post disengages from the femoral component and the native PCL guides further motion of the femur (femoral rollback). Thus the ACL substituting post mimics the native ACL function. The hypothesis of this study was that the ASCR implant can address the abnormal femoral sliding seen in contemporary CR implants.

Methods

The kinematics of an ACL-preserving implant, the ASCR implant, and a contemporary CR implant during deep knee bend was simulated using LifeMOD KneeSIM software (Fig. 2). The PCL was preserved in all implants. Anteroposterior motion of the femoral condyles relative to the tibia was measured. The implants were mounted on an average knee model created from Magnetic Resonance Imaging (MRI) of 40 healthy knees. The medial and lateral collateral ligaments, PCL, ACL (for ACL-preserving implant), quadriceps mechanism, and capsular tension were modeled. The soft-tissue insertions were obtained from the average knee model, and the mechanical properties were obtained from literature.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 83 - 83
1 Jan 2016
Nebergall A Malchau H Greene M
Full Access

Introduction

RSA is widely accepted as a precise method to asses wear and migration early in the postoperative period. In traditional RSA, one segment defines both the acetabular shell and the polyethylene liner. However, inserting beads into the liner permits employment of the shell and liner as two separate segments, thus enabling distinct analysis of the precision of three measurement methods in determining wear and acetabular shell migration. The purpose of this in vivo follow-up study was to determine if assigning the shell and liner as one combined, or two individual segments affected the precision of RSA measurements of wear and shell stability.

Methods

The UmRSA program was used to analyze the double examinations of 51 hips to determine if there was a difference in precision among 3 measurement methods: the shell only, the liner only, and the shell + liner combined segment. Tantalum beads were inserted into the liner and pelvic bone surrounding the shell intraoperatively for the purpose of RSA. Polyethylene wear was measured using point motion of the center of the head with respect to 3 different segments: 1) liner only, 2) the shell only and, 3) shell + liner segment. Cup stability was measured by segment motion comparing the stable pelvic segment to 1) the liner segment, 2) the shell only segment, and 3) the shell + liner segment. The Wilcoxon paired signed-ranks test was used to determine differences in condition number and bead counts among the 3 measurement methods (p ≤0.05).


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_19 | Pages 30 - 30
1 Dec 2014
Nortje M Hussey D McLennan-Smith R Dymond I Grobler G Dower B Bragdon C Muratoglu O Malchau H
Full Access

Introduction:

The ASR™ Articular Surface Replacement and ASR™ XL Metal-on-Metal systems were recalled due to high revision rates at five years. A worldwide clinical follow-up of patients was initiated. This paper summarizes current findings in South Africa (SA) in comparison with those outside SA (OSA).

Methods:

Patients were followed annually, or until revision, from 10 clinical centers worldwide. Data collected includes demographic, surgical, radiographic, blood metal ion levels, and patient reported outcome measures (PROM).


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 201 - 201
1 Jul 2014
Rowell S Reyes C Malchau H Muratoglu O
Full Access

Summary

Four highly cross-linked UHWMPEs except vitamin E-stabilised explants

Introduction

The development of both first and second generation highly cross-linked material focused on stabilizing radiation-induced free radicals as the sole precursor to oxidative degradation; however, secondary in vivo oxidation mechanisms have been identified in both conventional and highly cross-linked UHMWPE, induced by absorbed lipids and cyclic mechanical load. Retrieval studies are reporting in vivo oxidation highly cross-linked retrievals with up to ten year in vivo durations. Preclinical aging tests did not predict these in vivo material changes. With only a decade of these materials in clinical use, retrieval studies are limited to mid-term follow-up. In vitro studies face a challenge in effectively replicating the precise in vivo conditions that lead to this loss of oxidation resistance. In this study, we bypass replicating these in vivo variables by examining surgically-retrieved components, thereby testing material that has been affectively “pre-conditioned” by their in vivo service. After a preliminary post-operative analysis, we subjected retrievals to accelerated aging tests in order to predict the extent to which their oxidative stability had been uniquely compromised in vivo.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 142 - 142
1 Jul 2014
Mohaddes M Malchau H Herberts P Johansson P Kärrholm J
Full Access

Summary Statement

We analysed impaction bone grafting used together with cemented or uncemented fixation in acetabular revision surgery. The overall risk for re-revision did not differ between the cemented and uncemented group. However, aseptic loosening was more common in the cemented group.

Background

Several surgical techniques address bone defects in cup revision surgery. Bone impaction grafting, introduced more than thirty years ago, is a biologically and mechanically appealing method. The primary aim of this study was to evaluate the effect of bone impaction grafting when used with uncemented and cemented fixation in cup revision surgery. Uncemented cups resting on more than 50% host bone were used as controls.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 202 - 202
1 Jul 2014
Rowell S Estok D Kreuzer S Malchau H Muratoglu O
Full Access

Summary

Sequentially irradiated and annealed UHMWPE hip and knee retrievals showed subsurface in vivo oxidation in both the articular surface and unloaded surfaces, while three of four never-implanted shelf stored liners had oxidation in the bulk.

Introduction

Highly cross-linked polyethylene was developed to improve the wear resistance of UHMWPE bearing surfaces in total hip arthroplasty. First generation irradiated and annealed polyethylene showed high oxidation in vivo, largely attributed to only the partial-quenching of free radicals, along with additional radicals generated during terminal gamma sterilization. A second generation, three-step sequential irradiation and annealing method was advanced with the promise of better oxidative stability and improved mechanical properties. We hypothesised that without the complete elimination of free radicals combined with gas plasma sterilization requiring oxygen-permeable packaging, that this second generation material would be prone to shelf-oxidation in addition to in vivo oxidation.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 605 - 605
1 Dec 2013
Zumbrunn T Varadarajan KM Duffy M Rubash HE Malchau H Freiberg A Muratoglu O
Full Access

INTRODUCTION

Femoral head diameter has a major influence on stability and dislocation resistance of the hip joint after Total Hip Arthroplasty (THA). Dual Mobility (DM) implants can also reduce the risk of dislocation due the large diameter mobile liner which forms the femoroacetbular articulation. However, recent studies have shown that large head prostheses can directly impinge against native soft tissues, particularly the iliopsoas, leading to anterior hip pain. Dual mobility systems have emerged as a revision option in the treatment of failed metal on metal devices because of the high incidence of post revision instability secondary to abductor loss and need for capsulectomy. We hypothesized that an Anatomically Contoured Dual Mobility (ACDM) liner could provide joint stability while better accommodating the soft tissues surrounding the hip joint.

METHODS

The dislocation resistance of a 44 mm ACDM implant was compared to that of a 44 mm conventional DM liner. Both implants consisted of a 28 mm inner small diameter head and the liner was abducted to be in the worst case position for dislocation (Fig. 1). The ACDM liner was based on a 44 mm sphere with smaller radii used to contour the peripheral region below the equator of the liner. MSC Adams was used for dynamic simulations based on two previously described dislocation modes: (A) Posterior dislocation (at 90° hip flexion) with internal rotation of the hip and a posterosuperior directed joint force; (B) Posterior dislocation (starting at 90° flexion) with combined hip flexion and adduction and a posteromedial force direction (Fig. 2). Impingement-free motion (motion without neck impingement against the acetabular cup) and jump distance (head separation from acetabulum at dislocation) were measured for each implant. The acetabular cup was placed at 42.5° abduction and 19.7° anteversion, while the femoral component was anteverted by 9.75° based on published data.