Bone & Joint Open

Supplementary Material

10.1302/2633-1462.53.BJO-2023-0133.R1

Appendix

Supplementary Table i: PRISMA NMA checklist of items to include when	
reporting a systematic review involving a network meta-analysis	2
Supplementary Table ii: Protocol and search strategies	6
Supplementary Table iii: Excluded studies and reasons	8
Supplementary Table iv. Risk of bias assessment	10
Supplementary Figure a: Network forest plots	14
Supplementary Figure b. Relative ranking probability	19
Supplementary Table v. League tables	27
Supplementary Table vi Grading the evidence using CINeMA web applicati	on 35
Supplementary Figure c. publication bias	35
Supplementary Table vii: Meta-regression	45
Supplementary Table viii. Inconsistency	53
Supplementary Figure d. Contribution plots	62

Section/Topic	Item #	Checklist Item	Reported on Page #
TITLE			
Title	1	Identify the report as a systematic review incorporating a network meta-analysis (or related form of meta- analysis).	1,4 Introduction (3 rd paragraph)
ABSTRACT			
Structured summary	2	 Provide a structured summary including, as applicable: Background: main objectives Methods: data sources; study eligibility criteria, participants, and interventions; study appraisal; and <i>synthesis methods, such as network meta-analysis.</i> Results: number of studies and participants identified; summary estimates with corresponding confidence/credible intervals; <i>treatment rankings may also be discussed. Authors may choose to summarize pairwise comparisons against a chosen treatment included in their analyses for brevity.</i> Discussion/Conclusions: limitations; conclusions and implications of findings. Other: primary source of funding; systematic review registration number with registry name. 	2, Abstract section
Rationale	3	Describe the rationale for the review in the context of what is already known, <i>including mention of why a network meta-analysis has been conducted</i> .	3-4, Introduction(2 nd , 3 rd paragraph)
Objectives	4	Provide an explicit statement of questions being addressed, with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	3-4, Introduction(3 rd paragraph); Supplementary Table 2
METHODS			
Protocol and registration	5	Indicate whether a review protocol exists and if and where it can be accessed (e.g., Web address); and, if available, provide registration information, including registration number.	5, Method(1 st paragraph) Supplementary Table 2
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale. <i>Clearly describe eligible treatments included in the treatment network, and note whether any have been clustered or merged into the same node (with justification).</i>	5, Method(2 nd paragraph) Supplementary Table 2
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	5, Method(1 st paragraph) Supplementary Table 2

Table i. PRISMA NMA checklist of items to include when reporting a systematic review involving a network meta-analysis

Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	5, Method(1 st paragraph); Supplementary Table 2.
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	5, Method(3 rd paragraph); Figure 1; Supplementary Table 2-3
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	6, Method(4 th -5 th paragraph) Supplementary Table 2
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	5-6, Method(6 th paragraph) Supplementary Table 2
Geometry of the network	S1	Describe methods used to explore the geometry of the treatment network under study and potential biases related to it. This should include how the evidence base has been graphically summarized for presentation, and what characteristics were compiled and used to describe the evidence base to readers.	6, Method(7 th paragraph)
Risk of bias within individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	6, Method(6 th paragraph)
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means). Also describe the use of additional summary measures assessed, such as treatment rankings and surface under the cumulative ranking curve (SUCRA) values, as well as modified approaches used to present summary findings from meta-analyses.	6, Method(7 th paragraph)
Planned methods of analysis	14	 Describe the methods of handling data and combining results of studies for each network meta-analysis. This should include, but not be limited to: <i>Handling of multi-arm trials;</i> <i>Selection of variance structure;</i> <i>Selection of prior distributions in Bayesian analyses; and</i> <i>Assessment of model fit.</i> 	5-6, Method(4-7 th paragraph)
Assessment of Inconsistency	S2	Describe the statistical methods used to evaluate the agreement of direct and indirect evidence in the treatment network(s) studied. Describe efforts taken to address its presence when found.	6, Method(7 th paragraph)
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	6, Method(6 th paragraph)
Additional analyses	16	 Describe methods of additional analyses if done, indicating which were pre-specified. This may include, but not be limited to, the following: Sensitivity or subgroup analyses; Meta-regression analyses; Alternative formulations of the treatment network; and Use of alternative prior distributions for Bayesian analyses (if applicable). 	6, Method(7 th paragraph)

RESULTS †			
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	9, Result(1 st paragraph); Figure 1
Presentation of network structure	S3	Provide a network graph of the included studies to enable visualization of the geometry of the treatment network.	9, Result(3 st paragraph); Figure 2
Summary of network geometry	S4	Provide a brief overview of characteristics of the treatment network. This may include commentary on the abundance of trials and randomized patients for the different interventions and pairwise comparisons in the network, gaps of evidence in the treatment network, and potential biases reflected by the network structure.	9, Result(1 st paragraph); Table 1
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	9, Result(1 st paragraph); Table 1
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment.	11, Result; Supplementary Table 4
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: 1) simple summary data for each intervention group, and 2) effect estimates and confidence intervals. <i>Modified approaches may be needed to deal with information from larger networks</i> .	9, Result(1 st paragraph); Table 1
Synthesis of results	21	Present results of each meta-analysis done, including confidence/credible intervals. <i>In larger networks, authors may focus on comparisons versus a particular comparator (e.g. placebo or standard care), with full findings presented in an appendix. League tables and forest plots may be considered to summarize pairwise comparisons.</i> If additional summary measures were explored (such as treatment rankings), these should also be presented.	10-11, Result(3 rd -4 th paragraph); Table 2; Figure 3; Supplementary Figure 2,4,5; Supplementary Table 5
Exploration for inconsistency	S 5	Describe results from investigations of inconsistency. This may include such information as measures of model fit to compare consistency and inconsistency models, <i>P</i> values from statistical tests, or summary of inconsistency estimates from different parts of the treatment network.	12, Result(7 th paragraph); Supplementary Table 8
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies for the evidence base being studied.	10-11; Supplementary Figure 3; Supplementary Table 6, 8
Results of additional analyses	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression analyses, <i>alternative network geometries studied, alternative choice of prior distributions for Bayesian analyses,</i> and so forth).	12, Result; Supplementary Table 7
DISCUSSION			
Summary of evidence	24	Summarize the main findings, including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy-makers).	13, Discussion(1-5 th paragraph); Table 2.

Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review level (e.g., incomplete retrieval of identified research, reporting bias). <i>Comment on the validity of the assumptions, such as transitivity and consistency. Comment on any concerns regarding network geometry (e.g., avoidance of certain comparisons).</i>	15-16, Discussion(6 th paragraph)
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	11, 15-16; discussion, and conclusion section
FUNDING Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review. This should also include information regarding whether funding has been received from manufacturers of treatments in the network and/or whether some of the authors are content experts with professional conflicts of interest that could affect use of treatments in the network.	Title page, Declarations section

PICOS = population, intervention, comparators, outcomes, study design.

* Text in italics indicate wording specific to reporting of network meta-analyses that has been added to guidance from the PRISMA statement.

[†] Authors may wish to plan for use of appendices to present all relevant information in full detail for items in this section.

Table ii. Protocol and search strategies (PROSPERO Registration number:CRD42023388516)

Patient	Patients with a posterior malleolar fracture.		
Intervention	Percutaneous anteroposterior (A-P) screw fixation, open posteroanterior (P-A) screw fixation, and open posterior plate fixation		
Comparator	The posteroanterior screw technique will be most commonly used as the control group.		
Outcomes	 Postoperative clinical and radiological outcomes were assessed. Clinical outcomes: pain scores, using the Visual Analogue Score (VAS), and functional changes, as measured by the American Orthopedic Foot and Ankle Score (AOFAS), limitation of range of motion (a loss of ankle dorsiflexion ≥ 5 degrees), and complications (infection rate and peroneal nerve injury rate) Radiographic outcomes: post-operative articular step-off ≥ 2mm and the progression in osteoarthritis grade 		
Study design	This review encompasses studies employing prospective or retrospective designs.		
Inclusion criteria	The studies that investigate the comparative efficacy of distinct fixation approaches in patients with PMFs, such as the use of A-P screws, P-A screws, and plates, were included.		
Exclusion criteria	Single-arm trials, pediatric trials, case reports, studies with unknown/incomplete outcomes, duplicate data, stress/open/pathologic fractures, and unclear implant usage or outcome measurements were excluded.		

(A) PICOS, inclusion and exclusion criteria

(B) Search vocabulary

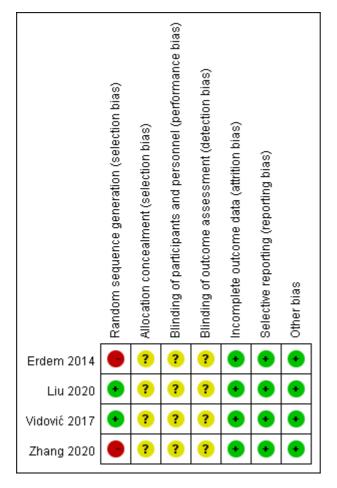
Database	#	Search syntax		
Embase	1	((malleol* OR ankle*) NEAR/3 (fracture* OR injur*)):ti,ab,kw,de		
	2	'trimalleolus fracture'/exp OR 'posterior malleolus fracture'/exp 'trimalleolar fracture'/exp OR 'posterior malleolar fracture'/exp OR 'ankle fracture'/de OR 'ankle injury'/de		
	3	(((fracture* OR bone*) NEAR/3 fixation*) OR osteosynthes* OR osteo-synthes*):ti,ab,kw,de		
	4	'fracture fixation'/exp		
	5	(#1 OR #2) AND (#3 OR #4) AND [embase]/lim		
MEDLINE	1	((malleol* OR ankle*) ADJ3 (fracture* OR injur*)).mp		
(Ovid)	2	"posterior malleolus fractures"/ OR "trimalleolus fractures"/ OR "posterior malleolar fractures"/ OR "trimalleolar fractures"/ OR "ankle fractures"/ OR "ankle Injuries"/		
	3	(((fracture* OR bone*) ADJ3 fixation*) OR osteosynthes* OR osteo-synthes*).mp		
	4	exp "Fracture Fixation"/		
	5	(1 OR 2) AND (3 OR 4)		
Scopus	1	TITLE-ABS-KEY ((malleol* OR ankle*) W/2 (fracture* OR injur*))		
	2	TITLE-ABS-KEY (((fracture* OR bone*) W/2 fixation*) OR osteosynthes* OR osteo-synthes*)		
		osicosynthes OK osico-synthes)		

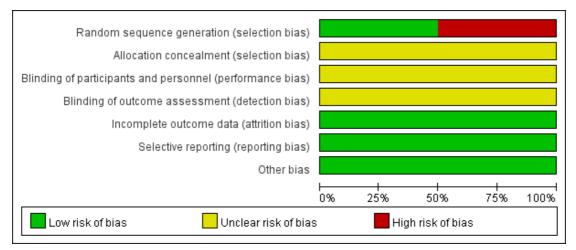
Table iii. Excluded studies and reasons

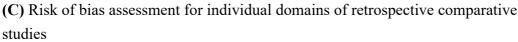
- Studies regarding the concern about fixation or non-fixation for posterior malleolar fracture
 - Guo J, Liu L, Yang Z, et al. The treatment options for posterior malleolar fractures in tibial spiral fractures. *International Orthopaedics* 2017; 41(9):1935-1943.
- Studies on posterior malleolar fracture fixation lacking outcomes regarding various implant comparisons
 - Karaca S, Enercan M, Özdemir G, et al. Importance of fixation of posterior malleolus fracture in trimalleolar fractures: A retrospective study. *Ulusal Travma ve Acil Cerrahi Dergisi* 2016; 22(6):553-558.
 - Li YD, Liu SM, Jia JS, Zhou JL. Choice of internal fixation methods for posterior malleolus fracture in both biomechanics and clinical application. Journal of Peking University Health sciences 2011; 43(5): 718-23. (Comparing groups with different fracture size with two different fixation methods)
 - Yang L, Yin G, Zhu J, et al. Posterolateral approach for posterior malleolus fixation in ankle fractures: functional and radiological outcome based on Bartonicek classification. *Archives of Orthopaedic and Trauma Surgery* 2022.
 - Zhou, Q., Lu, H., Wang, Z., Yu, S., & Zhang, H. (2017). Posterolateral Approach with Buttress Plates and Cannulated Screw Fixation for Large Posterior Malleolus Fractures. The Journal of foot and ankle surgery: official publication of the American College of Foot and Ankle Surgeons, 56(6), 1173–1179.
- Studies on posterior malleolar fractures lacking primary or secondary outcome measurements
 - Li M, Collier RC, Hill BW, et al. Comparing Different Surgical Techniques for Addressing the Posterior Malleolus in Supination External Rotation Ankle Fractures and the Need for Syndesmotic Screw Fixation. *Journal of Foot and Ankle Surgery* 2017; 56(4):730-734.
 - Verhage SM, Leijdesdorff A, Schipper IB, et al. Open reduction and internal fixation of the posterior malleolus fragment via the posterolateral approach is radiologically superior to 'A to P' screw fixation. *Foot* 2022; 51.
- Studies on posterior malleolar fractures solely comparing surgical approaches, without providing specific outcomes for individual implant efficacy
 - Shi H-F, Xiong J, Chen Y-X, et al. Comparison of the direct and indirect reduction techniques during the surgical management of posterior malleolar

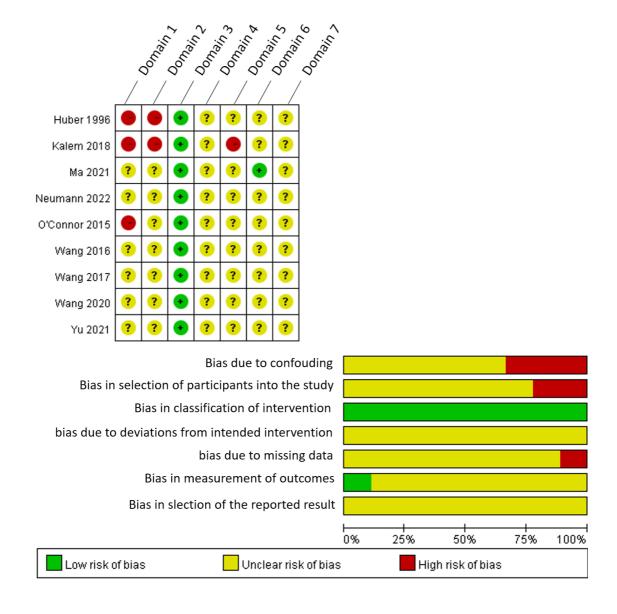
fractures. BMC musculoskeletal disorders 2017; 18(1):109.

- Studies on posterior malleolar fractures with insufficient data available for extraction
 - Tosun B, Selek O, Gok U, et al. Posterior malleolus fractures in trimalleolar ankle fractures: Malleolus versus transyndesmal fixation. Indian Journal of Orthopaedics, Vol. 52, 2018. pp. 309-314.
 - Weigelt L, Hasler J, Flury A, et al. Clinical and radiological mid- to longterm results after direct fixation of posterior malleolar fractures through a posterolateral approach. *Archives of Orthopaedic and Trauma Surgery* 2020; 140(11):1641-1647.

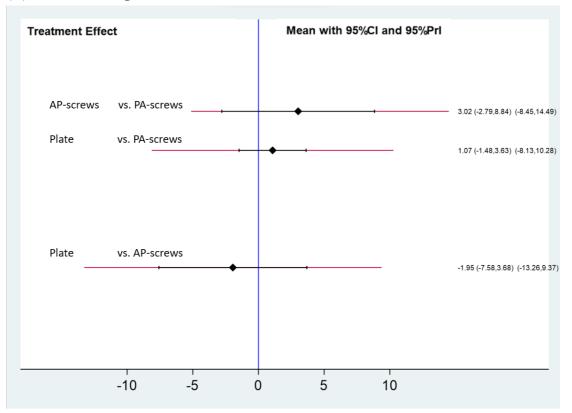

Table iv. Risk of bias assessment


(A) General descriptions

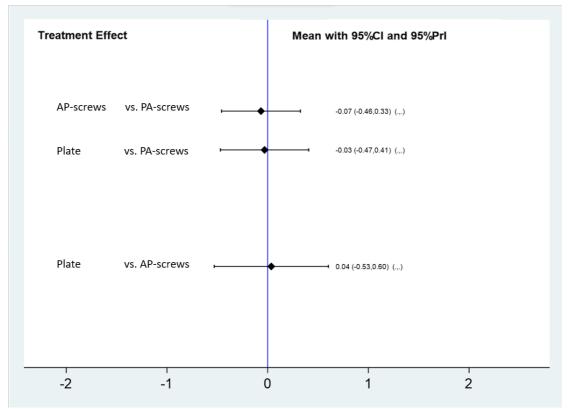

Study ID	Notes for risk of bias assessment
Randomized co	
Erdem (2014)	Non-standardized randomization: Fixation type was randomly
Liucin (2014)	assigned based on presentation order.
	Unclear: Allocation concealment, blinding of participants, and
	blinding of outcome assessment.
Vidović	Unclear: Allocation concealment, blinding of participants, and
(2017)	blinding of outcome assessment.
Liu (2020)	Unclear: Allocation concealment, blinding of participants, and
Liu (2020)	blinding of outcome assessment.
Zhang (2020)	Non-standardized randomization: Fixation type was randomly
Zhang (2020)	
	assigned based on presentation order.
	Unclear: Allocation concealment, blinding of participants, and
Detween estive	blinding of outcome assessment.
	comparative studies
Huber (1996)	Confounding and selection bias arise from the differential
	assessment of study and comparison groups across different time
	periods.
	Unclear: Bias due to deviations from intended intervention, bias of
	missing data, bias in measurement of outcomes and bias of
$V_{2} = 1_{2} + (2019)$	selection of the reported result.
Kalem (2018)	Confounding, selection and missing data biases arise due to the
	loss of follow-up for several patients included in the study and the
	selection of interventions based on the surgeon's preference for
	each patient.
	Unclear: Bias due to deviations from intended intervention, bias in
	measurement of outcomes, and bias of selection of the reported result.
$M_{2}(2021)$	
Ma (2021)	Unclear: Bias due to confounding, bias in selection of participants
	in the study, bias due to deviations from intended intervention,
Name	bias of missing data, and bias of selection of the reported result.
Neumann	Unclear: Bias due to confounding, bias in selection of participants
(2022)	in the study, bias due to deviations from intended intervention,
	bias of missing data, bias in measurement of outcomes, and bias of
O'Connor	selection of the reported result.
	Selection bias arises from patient selection based on database
(2015)	coding in the institute.
	Unclear: Bias in selection of participants in the study, bias due to
	deviations from intended intervention, bias of missing data, bias in
	measurement of outcomes, and bias of selection of the reported
V. (2021)	result.
Yu (2021)	Unclear: Bias due to confounding, bias in selection of participants
	in the study, bias due to deviations from intended intervention,
	bias of missing data, bias in measurement of outcomes and bias of
Wag = (2020)	selection of the reported result
Wang (2020)	Unclear: Bias due to confounding, bias in selection of participants
	in the study, bias due to deviations from intended intervention,


	bias of missing data, bias in measurement of outcomes, and bias of selection of the reported result.
Wang (2017)	Unclear: Bias due to confounding, bias in selection of participants in the study, bias due to deviations from intended intervention, bias of missing data, bias in measurement of outcomes and bias of selection of the reported result.
Wang (2016)	Unclear: Bias due to confounding, bias in selection of participants in the study, bias due to deviations from intended intervention, bias of missing data, bias in measurement of outcomes and bias of selection of the reported result.

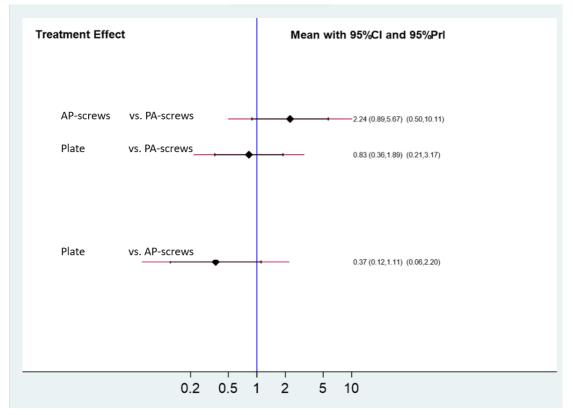
(B) Risk of bias assessment for individual domains of randomized controlled trials

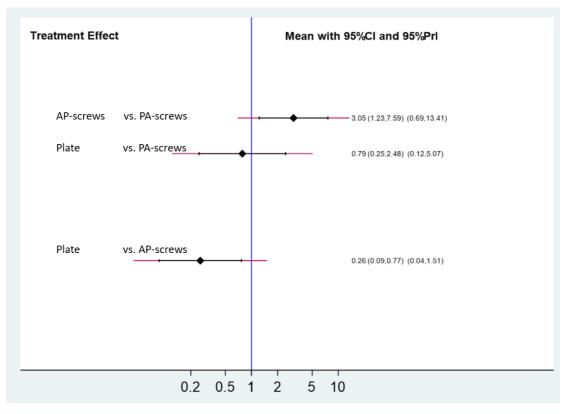


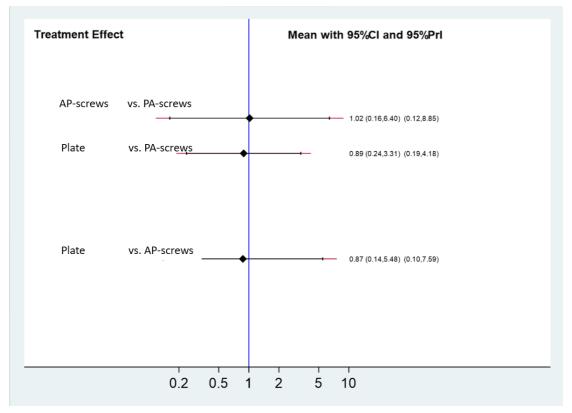
*Domain 1: Bias due to confounding; Domain 2: Bias in the selection of participants into the study; Domain 3: Bias in the classification of intervention; Domain 4: Bias due to deviations from the intended intervention; Domain 5: Bias due to missing data; Domain 6: Bias in the measurement of outcomes; Domain 7: Bias in the selection of the reported result.

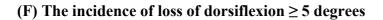

Fig a. Network forest plots

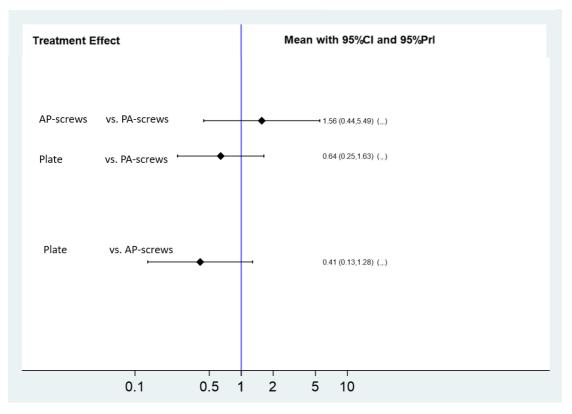
*Abbreviations: P-A screws, posteroanterior (P-A) screws; A-P screws, anteroposterior (A-P) screws; AOFAS changes, changes in the American Orthopedic Foot and Ankle Score; VAS changes, changes in visual analogue scale; CI, confidence interval; PrI, prediction interval.

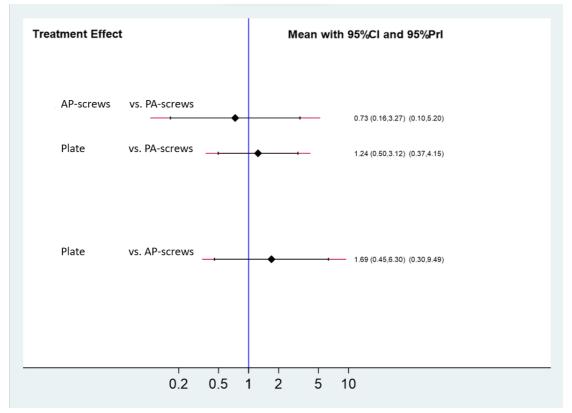

(A) AOFAS changes

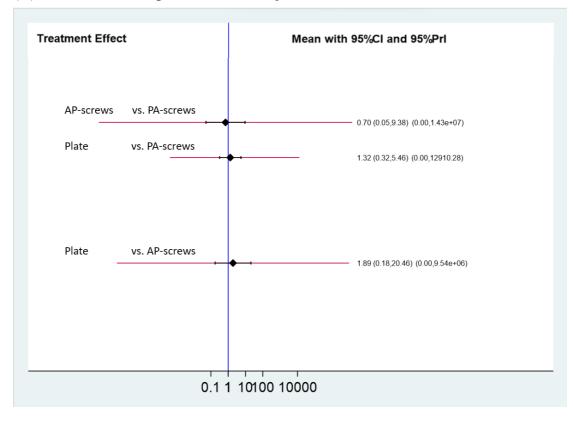

(B) VAS changes

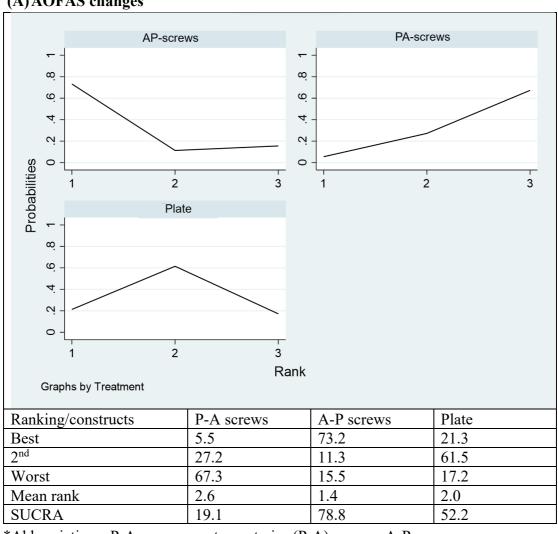

(C) The incidence of osteoarthritis grade progression




(D) The incidence of step-off $\geq 2mm$

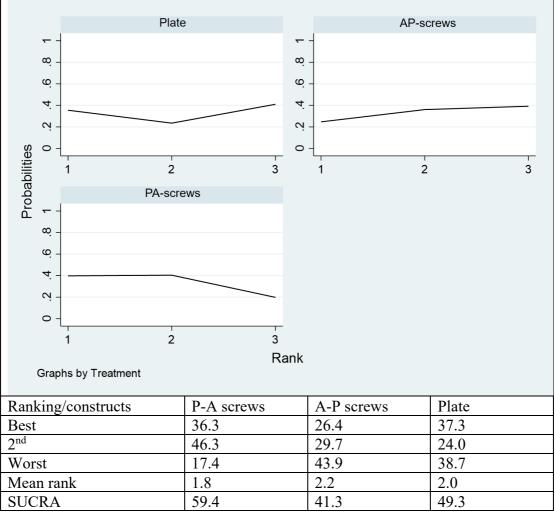

(E) The incidence of non-unions




(G) The incidence of infections

(H) The incidence of peroneal nerve injuries

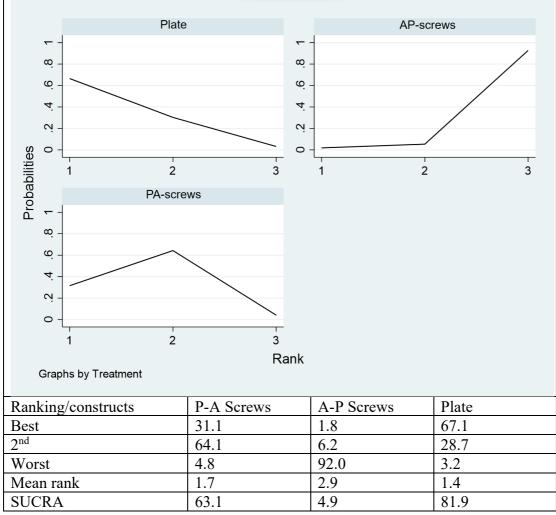
Fig b. Relative ranking probability



(A) AOFAS changes

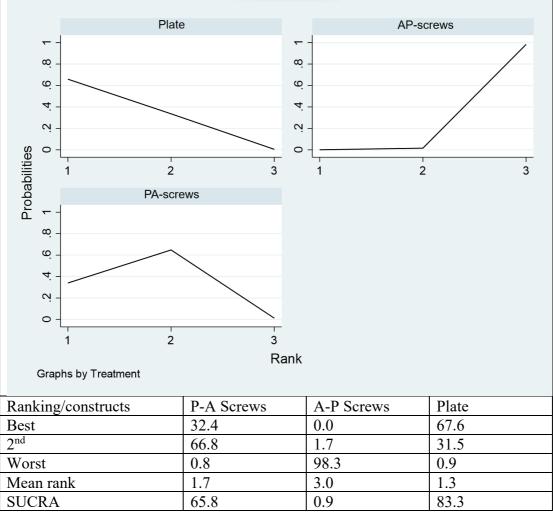
*Abbreviations: P-A screws, posteroanterior (P-A) screws; A-P screws,

anteroposterior (A-P) screws; AOFAS changes, changes in The American Orthopedic Foot and Ankle Score; SUCRA, the surface under the cumulative ranking curve

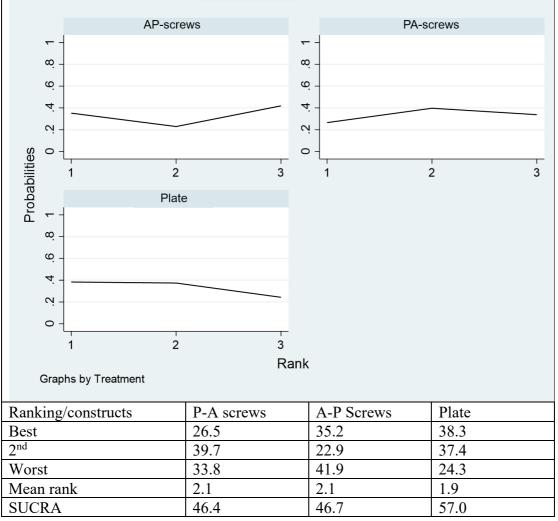

(B) VAS changes

*Abbreviations: P-A screws, posteroanterior (P-A) screws; A-P screws,

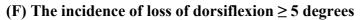
anteroposterior (A-P) screws; VAS changes, changes in Visual Analogue Scale;


SUCRA, the surface under the cumulative ranking curve

(C) The incidence of osteoarthritis grade progression

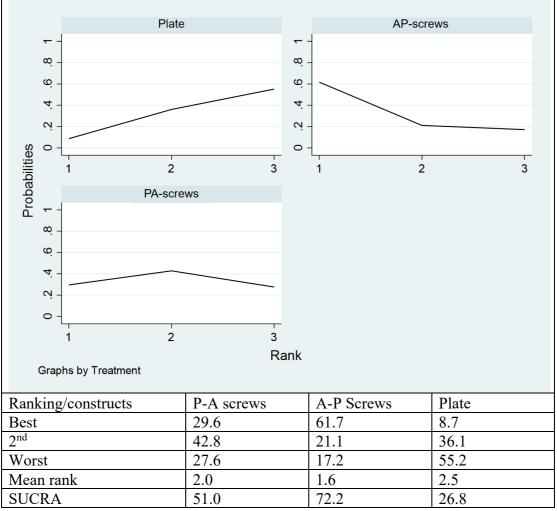

*Abbreviations: P-A screws, posteroanterior (P-A) screws; A-P screws,

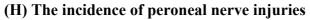
(D) The incidence of step-off $\geq 2mm$

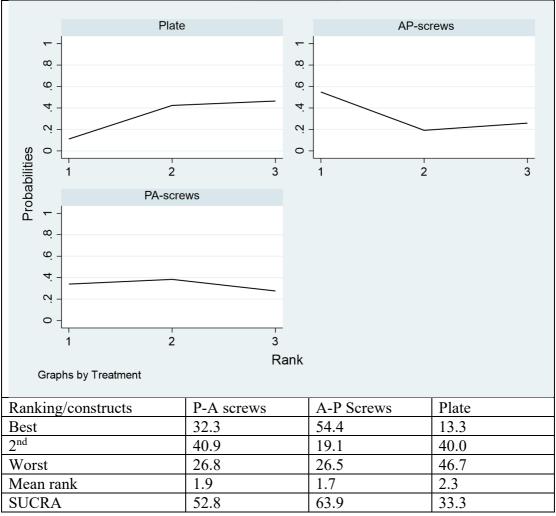



*Abbreviations: P-A screws, posteroanterior (P-A) screws; A-P screws,

(E) The incidence of non-unions


*Abbreviations: P-A screws, posteroanterior (P-A) screws; A-P screws,




*Abbreviations: P-A screws, posteroanterior (P-A) screws; A-P screws,

(G) The incidence of infections

*Abbreviations: P-A screws, posteroanterior (P-A) screws; A-P screws,

*Abbreviations: P-A screws, posteroanterior (P-A) screws; A-P screws,

Table v. League tables

(A) Summary of n	pairwise and network	meta-analyses of	treatment effectivenes	s for AOFAS changes
(1) Summary of p	Juli mise una necmon	meta analyses of	ci cacinent entecti venes	s for rior ris changes

	Pairwise Meta-analysis				
Network	P-A Screws	6.81 (2.38, 11.23)	1.00 (-1.28, 3.27)		
Meta- analysis	3.02 (-2.79,8.84)	A-P Screws	-0.69 (-1.76, 3.14)		
	1.07 (-1.48,3.63)	-1.95 (-7.58,3.68)	Plate		

NOTE. Effect expressed as MD with 95% CI for network meta-analysis or pairwise meta-analysis. The results of the network meta-analyses are shown in the lower left diagonal, while the results of the pairwise meta-analyses are displayed in the upper right diagonal. A positive MD value indicates a favorable outcome for the intervention in the lower diagonal.

*Abbreviations: P-A screws, posteroanterior (P-A) screws; A-P screws, anteroposterior (A-P) screws; AOFAS changes, changes in The American Orthopedic Foot and Ankle Score.

	Pairwise Meta-analysis					
Network	P-A Screws	0.00 (-0.29, 0.29)	-0.12 (-0.55, 0.31)			
Meta- analysis	-0.07 (-0.46,0.33)	A-P Screws	0.39 (-0.33, 1.11)			
	-0.03 (-0.47,0.41)	0.04 (-0.53,0.60)	Plate			

(B) Summary of pairwise and network meta-analyses of treatment effectiveness for VAS score changes

NOTE. Effect expressed as MD with 95% CI for network meta-analysis or pairwise meta-analysis. The results of the network meta-analyses are shown in the lower left diagonal, while the results of the pairwise meta-analyses are displayed in the upper right diagonal. A positive MD value indicates a favorable outcome for the intervention in the lower diagonal.

*Abbreviations: P-A screws, posteroanterior (P-A) screws; A-P screws, anteroposterior (A-P) screws; VAS changes, changes in Visual Analogue Scale.

		Pairwise Meta-analysis	
Network	P-A Screws	2.20 (0.79, 6.12)	0.86 (0.36, 2.08)
Meta- analysis	2.24 (0.89,5.67)	A-P Screws	0.33 (0.66, 1.92)
	0.83 (0.36,1.89)	0.37 (0.12,1.11)	Plate

(C) Summary of pairwise and network meta-analyses of treatment effectiveness for the incidence of osteoarthritis grade progression

NOTE. Effect expressed as OR with 95% CI for network meta-analysis or pairwise meta-analysis. The results of the network meta-analyses are shown in the lower left diagonal, while the results of the pairwise meta-analyses are displayed in the upper right diagonal. An OR value < 1 indicates a favorable outcome for the intervention in the lower diagonal.

		Pairwise Meta-analysis		
Network	P-A Screws	4.21 (1.52, 11.63)	0.36 (0.08, 1.75)	
Meta- analysis	3.05 (1.23,7.59)	A-P Screws	0.45 (0.12, 1.72)	
	0.79 (0.25,2.48)	0.26 (0.09,0.77)	Plate	

(D) Summary of pairwise and network meta-analyses of treatment effectiveness for the incidence of step-off $\geq 2mm$

NOTE. Effect expressed as OR with 95% CI for network meta-analysis or pairwise meta-analysis. The results of the network meta-analyses are shown in the lower left diagonal, while the results of the pairwise meta-analyses are displayed in the upper right diagonal. An OR value < 1 indicates a favorable outcome for the intervention in the lower diagonal.

		Pairwise Meta-analysis	
Network	P-A Screws	0.87 (0.09, 8.52)	0.86 (0.17, 4.32)
Meta- analysis	1.02 (0.16,6.40)	A-P Screws	0.64 (0.04, 10.69)
	0.89 (0.24,3.31)	0.87 (0.14,5.48)	Plate

(E) Summary of pairwise and network meta-analyses of treatment effectiveness for the incidence of non-unions

NOTE. Effect expressed as OR with 95% CI for network meta-analysis or pairwise meta-analysis. The results of the network meta-analyses are shown in the lower left diagonal, while the results of the pairwise meta-analyses are displayed in the upper right diagonal. An OR value < 1 indicates a favorable outcome for the intervention in the lower diagonal.

		Pairwise Meta-analysis	
Network	P-A Screws	1.31 (0.32, 5.43)	0.64 (0.25, 1.63)
Meta- analysis	1.56 (0.44,5.49)	A-P Screws	0.38 (0.11, 1.23)
	0.64 (0.25,1.63)	0.41 (0.13,1.28)	Plate

(F) Summary of pairwise and network meta-analyses of treatment effectiveness for the incidence of loss of dorsiflexion \geq 5 degrees

NOTE. Effect expressed as OR with 95% CI for network meta-analysis or pairwise meta-analysis. The results of the network meta-analyses are shown in the lower left diagonal, while the results of the pairwise meta-analyses are displayed in the upper right diagonal. An OR value < 1 indicates a favorable outcome for the intervention in the lower diagonal.

		Pairwise Meta-analysis					
Network	P-A Screws	0.45 (0.04, 5.58)	1.33 (0.51, 3.43)				
Meta- analysis	0.73 (0.16,3.27)	A-P Screws	1.46 (0.35, 6.10)				
	1.24 (0.50,3.12)	1.69 (0.45,6.30)	Plate				

(G) Summary of pairwise and network meta-analyses of treatment effectiveness for the incidence of infections

NOTE. Effect expressed as OR with 95% CI for network meta-analysis or pairwise meta-analysis. The results of the network meta-analyses are shown in the lower left diagonal, while the results of the pairwise meta-analyses are displayed in the upper right diagonal. An OR value < 1 indicates a favorable outcome for the intervention in the lower diagonal.

		Pairwise Meta-analysis	
Network	P-A Screws	0.66 (0.01, 35.23)	1.26 (0.30, 5.29)
Meta- analysis	0.70 (0.05,9.38)	A-P Screws	1.60 (0.13, 19.61)
	1.32 (0.32,5.46)	1.89 (0.18,20.46)	Plate

(H) Summary of pairwise and network meta-analyses of treatment effectiveness for the incidence of peroneal nerve injuries

NOTE. Effect expressed as OR with 95% CI for network meta-analysis or pairwise meta-analysis. The results of the network meta-analyses are shown in the lower left diagonal, while the results of the pairwise meta-analyses are displayed in the upper right diagonal. An OR value < 1 indicates a favorable outcome for the intervention in the lower diagonal.

Table vi. Grading the evidence using CINeMA web application

(A) Grading the evidence in fixation constructs for the American Orthopedic Foot and

		<u> </u>	-					
Comparison	Studies	Within-	Reporting	Indirectness	Imprecision	Heterogeneity	Incoherence	Confidence
-		study	bias		-	0.		rating
		bias						_
Plate:A-P	2	Some	Low risk	No concerns	No concerns	Some concerns	No concerns	Moderate
screws		concerns						
Plate:P-A	9	Some	Low risk	No concerns	No concerns	Some concerns	No concerns	Moderate
screws		concerns						
A-P Screws:P-	2	Some	Low risk	No concerns	No concerns	Some concerns	No concerns	Moderate
A screws		concerns						

Ankle Score change/improvement

*Abbreviations: P-A screws, posteroanterior (P-A) screws; A-P screws,

anteroposterior (A-P) screws

(B) Grading the evidence in fixation constructs for visual Analogue Scale

chang	e/impro	vement						
Comparison	Studies	Within- study bias	Reporting bias	Indirectness	Imprecision	Heterogeneity	Incoherence	Confidence rating
Plate:A-P screws	1	Major concerns	Low risk	No concerns	No concerns	Major concerns	No concerns	Very low
Plate:P-A screws	2	Some concerns	Low risk	No concerns	No concerns	Major concerns	No concerns	Very low
A-P Screws:P- A screws	2	Some concerns	Low risk	No concerns	No concerns	Major concerns	No concerns	Very low

*Abbreviations: P-A screws, posteroanterior (P-A) screws; A-P screws,

anteroposterior (A-P) screws

(C) Grading the evidence in fixation constructs for the incidence of osteoarthritis

Stude progression								
Comparison	Studies	Within- study bias	Reporting bias	Indirectness	Imprecision	Heterogeneity	Incoherence	Confidence rating
Plate:A-P screws	2	Some concerns	Low risk	No concerns	Some concerns	Some concerns	No concerns	Moderate
Plate:P-A screws	5	No concerns	Low risk	No concerns	Major concerns	No concerns	No concerns	Low
A-P Screws:P-A screws	2	Some concerns	Low risk	No concerns	Some concerns	No concerns	No concerns	Moderate

grade progression

*Abbreviations: P-A screws, posteroanterior (P-A) screws; A-P screws,

anteroposterior (A-P) screws

(D) Grading the evidence in fixation constructs for the incidence of step-off $\geq 2mm$	(D	Grading the	evidence in	fixation	constructs f	for the	incidence	of step-off $> 2mm$	1
--	----	-------------	-------------	----------	--------------	---------	-----------	---------------------	---

Comparison	Studies	Within- study bias	Reporting bias	Indirectness	Imprecision	Heterogeneit y	Incoherenc e	Confidenc e rating
Plate:A-P	2	Some	Low risk	No concerns	No concerns	Major	No concerns	Low
screws		concerns				concerns		
Plate:P-A	3	Some	Low risk	No concerns	Major	No concerns	No concerns	Low
screws		concerns			concerns			
A-P Screws:P-	2	Some	Low risk	No concerns	No concerns	Some	No concerns	Moderate
A screws		concerns				concerns		

*Abbreviations: P-A screws, posteroanterior (P-A) screws; A-P screws,

anteroposterior (A-P) screws

Comparison	Studies	Within- study bias	Reporting bias	Indirectness	Imprecision	Heterogeneity	Incoherence	Confidence rating
Plate:A-P	3	Some	Low risk	No concerns	Major	No concerns	No concerns	Low
screws		concerns			concerns			
Plate:P-A	8	Some	Low risk	No concerns	Major	No concerns	No concerns	Low
screws		concerns			concerns			
A-P Screws:P-	3	Some	Low risk	No concerns	Major	No concerns	No concerns	Low
A screws		concerns			concerns			

(E) Grading the evidence in fixation constructs for the incidence of non-unions

*Abbreviations: P-A screws, posteroanterior (P-A) screws; A-P screws,

anteroposterior (A-P) screws

(F) Grading the evidence in fixation constructs for the incidence of loss of

dorsiflexion \geq 5 degrees

Comparison	Studies	Within- study	Reporting bias	Indirectness	Imprecision	Heterogeneity	Incoherence	Confidence rating
		bias						-
Plate:A-P	1	Major	Low risk	No concerns	Some	Some concerns	No concerns	Low
screws		concerns			concerns			
Plate:P-A	2	Some	Low risk	No concerns	Major	No concerns	No concerns	Low
screws		concerns			concerns			
A-P Screws:P-A	1	Major	Low risk	No concerns	Major	No concerns	No concerns	Very low
screws		concerns			concerns			

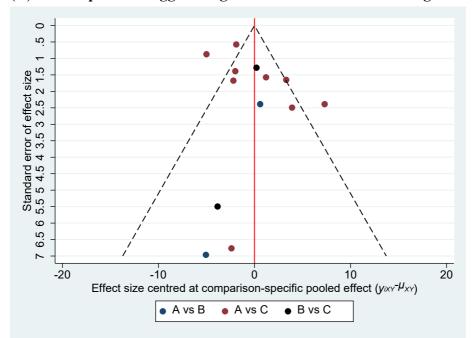
*Abbreviations: P-A screws, posteroanterior (P-A) screws; A-P screws,

anteroposterior (A-P) screws

(G) Grading the evidence in fixation constructs for the incidence of infections

Comparison	Studies	Within-	Reporting	Indirectness	Imprecision	Heterogeneity	Incoherence	Confidence
		study	bias					rating
		bias						
Plate:A-P	2	Major	Low risk	No concerns	Major	No concerns	No concerns	Very low
screws		concerns			concerns			
Plate:P-A	7	Some	Low risk	No concerns	Major	No concerns	No concerns	Low
screws		concerns			concerns			
A-P Screws:P-A	2	Some	Low risk	No concerns	Major	No concerns	No concerns	Low
screws		concerns			concerns			

*Abbreviations: P-A screws, posteroanterior (P-A) screws; A-P screws,


anteroposterior (A-P) screws

(H)Grading the evidence in fixation constructs for the incidence of peroneal nerve

•		
1n	Juries	

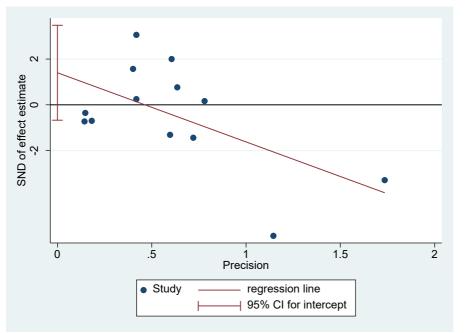
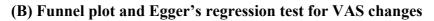
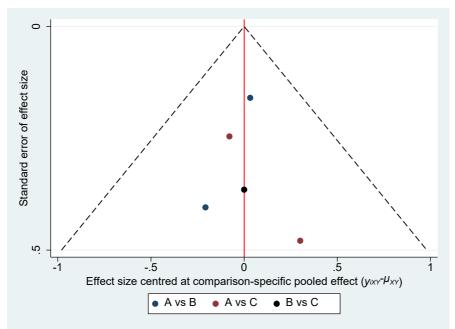
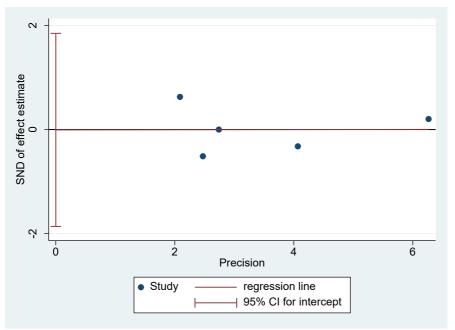

Comparison	Studies	Within- study bias	Reporting bias	Indirectness	Imprecision	Heterogeneity	Incoherence	Confidence rating
Plate:A-P screws	2	Major concerns	Low risk	No concerns	Major concerns	No concerns	No concerns	Very low
Plate:P-A screws	4	Some concerns	Low risk	No concerns	Major concerns	No concerns	No concerns	Low
A-P Screws:P-A screws	1	Major concerns	Low risk	No concerns	Major concerns	No concerns	No concerns	Very low

Figure c. Publication bias

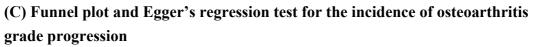


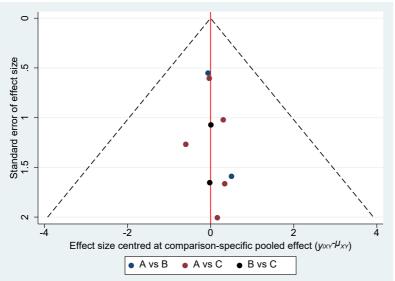

(A) Funnel plot and Egger's regression test for AOFAS changes

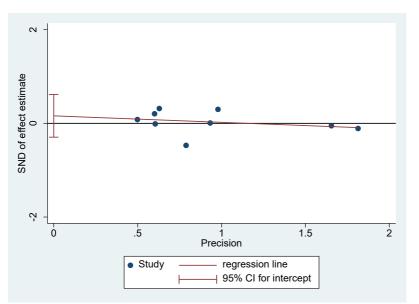
*Symbols for abbreviation: A for P-A screws, posteroanterior (P-A) screws; B for A-P screws, anteroposterior (A-P) screws; C for plate; American Orthopedic Foot and Ankle Score(final follow-up)

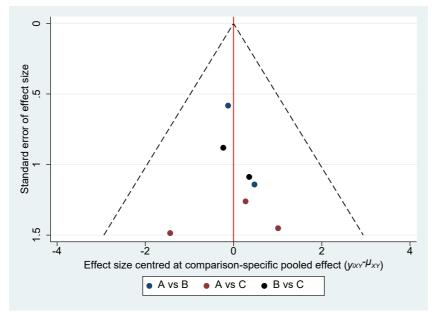


Egger's test for small-study effects:							
Std_Eff Coefficient Std. err. t $P> t $ [95% conf. interval]							
slope	-3.022259	1.269577	-2.38	0.036	-5.816579	2279399	
bias 1.401978 .9423804 1.49 0.165672187 3.476144							
Test of H0: no small-study effects $P = 0.165$							



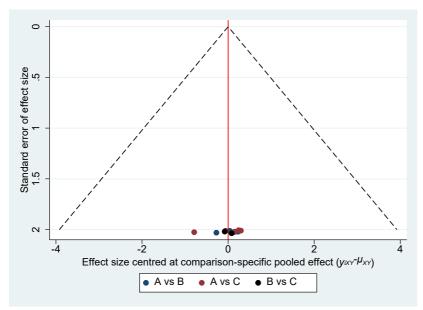


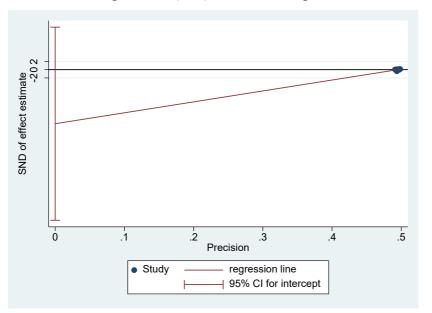

*Symbols for abbreviation: A for P-A screws, posteroanterior (P-A) screws; B for A-P screws, anteroposterior (A-P) screws; C for plate; Visual Analogue Scale score(final follow-up)


Egger's test for small-study effects:							
Std_Eff Coefficient Std. err. t $P > t $ [95% conf. interval]							
slope	.0015353	.1518789	0.01	0.993	4818112	.4848817	
bias -0.006424 .5834252 -0.01 0.992 -1.863143 1.850295							
Test of H0:	Test of H0: no small-study effects $P = 0.992$						

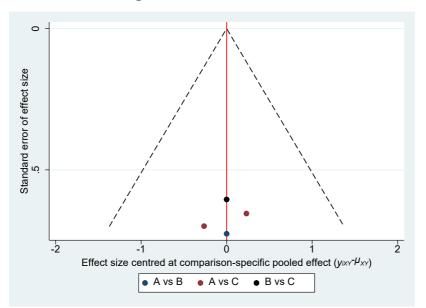


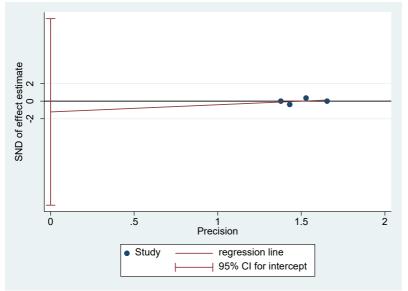
Egger's test for small-study effects:							
Std_Eff Coefficient Std. err. t $P > t $ [95% conf. interval]							
slope	1384289	.1841923	-0.75	0.477	5739744	.2971165	
bias	.160336	.1926532	0.83	0.433	2952165	.6158884	
Test of H0: no small-study effects $P = 0.433$							

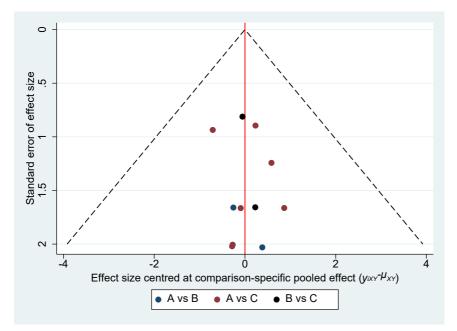



(D) Funnel plot and Egger's regression test for the incidence of step-off $\geq 2mm$

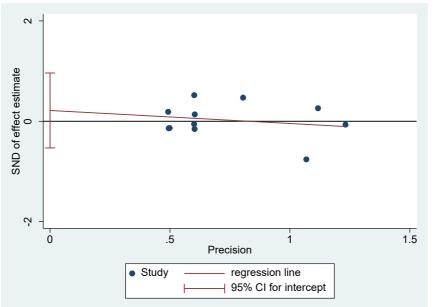
Egger's test for small-study effects:							
Std_Eff	Coefficient	Std. err.	t	<i>P</i> > t	[95% conf.	interval]	
slope	2572949	.67302	-0.38	0.718	-1.987348	1.472758	
bias	.2802092	.6924838	0.40	0.702	-1.499877	2.060295	
Test of H0: no small-study effects $P = 0.702$							


(E)Funnel plot and Egger's regression test for the incidence of non-unions

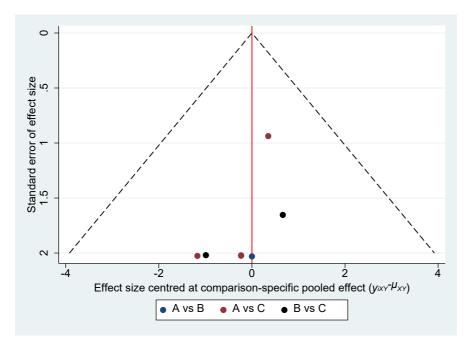


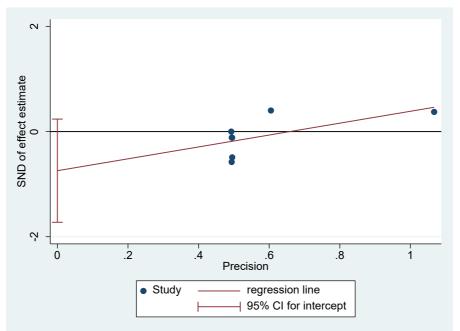

Egger's test for small-study effects:								
Std_Eff Coefficient Std. err. t $P > t $ [95% conf. interval]								
slope	26.45574	20.88847	1.27	0.237	-20.79727	73.70875		
bias	-13.09814	10.34171	-1.27	0.237	-36.4927	10.29643		
Test of H0: no small-study effects $P = 0.237$								

(F) Funnel plot and Egger's regression test for the incidence of loss of dorsiflexion ≥ 5 degrees



Egger's test for small-study effects:							
Std_Eff	Coefficient	Std. err.	t	<i>P</i> > t	[95% conf. interval]		
slope	.813796	1.638069	0.50	0.669	-6.234245 7.861837		
bias	-1.224837	2.459375	-0.50	0.668	-11.80667 -9.356998		
Test of H0:	Test of H0: no small-study effects $P = 0.668$						




(G)Funnel plot and Egger's regression test for the incidence of infections

Egger's test for small-study effects:												
Std_Eff Coefficient Std. err. t $P> t $ [95% conf. interval]												
slope	2592954	.4211579	-0.62	0.553	-1.212021	.6934299						
bias	.2153737	.3297208	0.65	0.530	5305066	.961254						
Test of H0:	no small-stud	y effects P	= 0.530			Test of H0: no small-study effects $P = 0.530$						

(H) Funnel plot and Egger's regression test for the incidence of peroneal nerve injuries

Egger's test for small-study effects:								
Std_EffCoefficientStd. err.t $P > t $ [95% conf. interval]								
slope	1.130469	.6119427	1.85	0.124	4425794	2.703518		
bias	7437146	.3818208	-1.95	0.109	-1.725216	.2377871		
Test of H0:	Test of H0: no small-study effects $P = 0.109$							

Table vii. Meta-regression

(A) SUCRA and mean ranks changes of AOFAS changes before and after model adjustment

Covariate/ SUCRA	P-A Screws	A-P Screws	Plate
Unadjusted model	25.8	78.6	45.5
Age	41.5	85.7	22.8
Male ratio	44.8	72.2	32.9
Publish year	28.7	71.3	42.8
Publish type	21.1	69.3	59.6

Covariate/ Mean rank	P-A Screw	A-P Screw	Plate
Unadjusted model	2.5	1.4	2.1
Age	2.2	1.3	2.5
Male ratio	2.1	1.6	2.3
Publish year	2.4	1.4	2.1
Publish type	2.6	1.6	1.8

Abbreviations: P-A screws, posteroanterior (P-A) screws; A-P screws, anteroposterior (A-P) screws; AOFAS changes, changes in The American Orthopedic Foot and Ankle Score; SUCRA, the surface under the cumulative ranking curve

Covariate/ SUCRA	P-A Screws	A-P Screws	Plate
Unadjusted model	59.4	41.3	49.3
Age	78.2	16.8	55.0
Male ratio	50.8	22.4	76.8
Publish year	N/A*	N/A*	N/A*
Publish type	33.0	33.0	83.9

(B) SUCRA and mean ranks changes of VAS changes before and after model adjustment

Covariate/ Mean rank	P-A Screws	A-P Screws	Plate
Unadjusted model	1.8	2.2	2.0
Age	1.4	2.7	1.9
Male ratio	2.0	2.6	1.5
Publish year	N/A*	N/A*	N/A*
Publish type	2.3	2.3	1.3

Abbreviations: P-A screws, posteroanterior (P-A) screws; A-P screws, anteroposterior (A-P) screws; VAS changes, changes in Visual Analogue Scale; SUCRA, the surface under the cumulative ranking curve

*Unavailability of subgroup data for meta-regression

Covariate/ SUCRA	P-A Screws	A-P Screws	Plate
Unadjusted model	63.1	4.9	81.9
Age	35.9	89.6	24.4
Male ratio	36.9	84.6	28.4
Publish year	54.2	66.9	28.9
Publish type	37.9	93.1	19.0

(C) SUCRA and mean ranks changes of the incidence of osteoarthritis grade progression before and after model adjustment

Covariate/ Mean rank	P-A Screws	A-P Screws	Plate
Unadjusted model	1.7	2.9	1.4
Age	2.3	1.2	2.5
Male ratio	2.3	1.3	2.4
Publish year	1.9	1.7	2.4
Publish type	2.2	1.1	2.6

Covariate/ SUCRA	P-A Screws	A-P Screws	Plate
Unadjusted model	65.8	0.9	83.3
Age	29.0	98.4	22.5
Male ratio	78.5	47.1	24.4
Publish year	40.6	90.8	18.5 19.1
Publish type	36.4	94.5	

(D) SUCRA and mean ranks changes of the incidence of step-off \geq 2mm before and after model adjustment

Covariate/ Mean rank	P-A Screws	A-P Screws	Plate
Unadjusted model	1.7	3	1.3
Age	2.4	1.0	2.5
Male ratio	1.4	2.1	2.5
Publish year	2.2	1.2	2.6
Publish type	2.3	1.1	2.6

Covariate/ SUCRA	P-A Screws	A-P Screws	Plate
Unadjusted model	45.9 49.0	46.7	57.4 44.6
Age Male ratio	49.0 52.3	56.5 53.8	43.9
Publish year Publish type	48.6 51.0	54.6 52.7	47.1 46.3

(E) SUCRA and mean ranks changes of the incidence of non-unions before and after model adjustment

Covariate/ Mean rank	P-A Screws	A-P Screws	Plate
Unadjusted model	2.1	2.1	1.9
Age	2.0	1.9	2.1
Male ratio	2.0	1.9	2.1
Publish year	2.0	1.9	2.1
Publish type	2.0	1.9	2.1

Covariate/ SUCRA	P-A Screws	A-P Screws	Plate
Unadjusted model	45.5	16.3	88.2
Age	48.5	66.2	35.3
Male ratio	N/A*	N/A*	N/A*
Publish year	N/A*	N/A*	N/A*
Publish type	48.5	66.2	35.3

(F) SUCRA and mean ranks changes of the incidence of loss of dorsiflexion ≥ 5 degrees before and after model adjustment

Covariate/ Mean rank	P-A Screws	A-P Screws	Plate
Unadjusted model	2.1	2.7	1.2
Age	2.0	1.7	2.3
Male ratio	N/A*	N/A*	N/A*
Publish year	N/A*	N/A*	N/A*
Publish type	2.0	1.7	2.3

*Unavailability of subgroup data for meta-regression

Covariate/ SUCRA	P-A Screw	A-P Screw	Plate
Unadjusted model	60.3	68.4	21.3
Age	40.9	35.2	73.9
Male ratio	36.5	40.7	72.8
Publish year	51.2	32.4	66.4
Publish type	48.2	22.1	79.6

(G) SUCRA and mean ranks changes of the incidence of infections before and after model adjustment

Covariate/ Mean rank	P-A Screw	A-P Screw	Plate
Unadjusted model	1.8	1.6	2.6
Age	2.2	2.3	1.5
Male ratio	2.3	2.2	1.5
Publish year	2.0	2.4	1.7
Publish type	2.0	2.6	1.4

Covariate/ SUCRA	P-A Screws	A-P Screws	Plate
Unadjusted model	52.8	63.9	33.3
Age	45.7	31.0	73.3
Male ratio	40.4	51.3	58.2
Publish year	59.3	28.9	61.8
Publish type	53.3	42.7	54.0

(H) SUCRA and mean ranks changes of the incidence of peroneal nerve injuries before and after model adjustment

Covariate/ Mean rank	P-A Screws	A-P Screws	Plate
Unadjusted model	1.9	1.7	2.3
Age	2.1	2.4	1.5
Male ratio	2.2	2.0	1.8
Publish year	1.8	2.4	1.8
Publish type	1.9	2.1	1.9

Table viii. Inconsistency

In this study, both local and global inconsistencies within our network analysis framework were evaluated ^{1,2}. For local inconsistency, two distinct methods were implemented: the loop-specific method, which scrutinizes discrepancies between direct and indirect evidence, and the node-splitting approach, disaggregating evidence pertaining to a particular comparison into direct and indirect forms, enabling a detailed assessment of their variances. Additionally, we conducted a design-bytreatment analysis, a strategy aimed at appraising global inconsistency in the network.

References:

1. Lu G, Ades AE. Combination of direct and indirect evidence in mixed treatment comparisons. Stat Med. 2004;23(20):3105–3124.

2. White IR. Multivariate random-effects meta-regression: updates to Mvmeta. The Stata Journal. 2011;11(2):255–270.

Outcome	Fit design-by-treatment interaction model	Explore loop inconsistency
AOFAS changes	<i>P</i> =0.0806	<i>P</i> =0.4089
VAS changes	<i>P</i> =0.8121	<i>P</i> =0.8912
The incidence of osteoarthritis grade progression	<i>P</i> =0.9892	<i>P</i> =0.9321
The incidence of step-off ≥ 2 mm	<i>P</i> =0.1600	<i>P</i> =0.1600
The incidence of non- unions	<i>P</i> =0.9792	<i>P=0.9254</i>
The incidence of loss of dorsiflexion ≥ 5 degrees	<i>P</i> =0.6678	<i>P</i> =0.3517
The incidence of infections	<i>P</i> =0.9622	<i>P</i> =0.6603
The incidence of peroneal nerve injuries	<i>P</i> =0.7489	<i>P</i> =0.6596

(A) Overview of global design inconsistency and local loop inconsistency

Symbols for abbreviation: AOFAS changes, changes in The American Orthopedic Foot and Ankle Score; VAS changes, changes in Visual Analogue Scale (B) AOFAS changes: a detailed analysis for local side-splitting inconsistency and global design inconsistency

Side	Direct		Indirect		Difference		
	Coef.	Std. Err.	Coef.	Std. Err.	Coef.	Std. Err.	P> z
A B *	6.583443	2.251179	-9.784472	2.968006	16.36791	4.568124	0.000
A C *							
BC	.6786113	1.248323	-15.6893	4.397447	16.36791	4.568124	0.000

1. Side-splitting inconsistency between direct and indirect evidence

*Symbols for abbreviation: A for P-A screws, posteroanterior (P-A) screws; B for A-P screws, anteroposterior (A-P) screws; C for plate; AOFAS changes, changes in The American Orthopedic Foot and Ankle Score

2. Design inconsistency

Multivariate meta-analysis

Variance-covariance matrix = proportional .5*I(2)+.5*J(2,2,1)

Method = reml	Method = reml				Number of dimensions $= 2$			
Restricted log likelihood = -22.985			Number of observations $=$ 9					
	Coefficient S	td. err.	Z	<i>P</i> > z	[95% conf. interval]			
_y_B								
cons	6.300269 3.	263543	1.93	0.054	0961583	12.6967		
_y_C								
des_AC	-6.137529 3	5.513181	-1.75	0.081	-13.02324	.74818		
cons	6.378723 3	.278746	1.95	0.052	0475015	12.80495		

*Symbols for abbreviation: B for A-P screws, anteroposterior (A-P) screws; C for plate

For _y_B, the constant 6.30 represents the average mean difference between treatments A (P-A screws) and B in the AB design.

For_y_C, the constant 6.38 denotes the average mean difference between treatments A (P-A screws) and C in the AC design.

(C) VAS changes: a detailed analysis for local side-splitting inconsistency and global design inconsistency

Side	Direct		Indirect		Difference		
	Coef.	Std. Err.	Coef.	Std. Err.	Coef.	Std. Err.	P> z
AB *	002333	.1484688	-1.092326	.8686015	1.089993	.8958126	0.224
A C *	1208315	.2186997	.6998662	.6802681	8206976	.7233747	0.257
BC	.3775063	.356806	2233813	.2902408	.6008876	.4531157	0.185

1. Side-splitting inconsistency between direct and indirect evidence

*Symbols for abbreviation: A for P-A screws, posteroanterior (P-A) screws; B for A-P screws, anteroposterior (A-P) screws; C for plate; VAS changes, changes in Visual Analogue Scale

2. Design inconsistency

Multivariate meta-analysis

Variance-covariance matrix = proportional .5*I(2)+.5*J(2,2,1)

Method = reml Number of dimensions = 2

Restricted log likelihood = -1.0845516 Number of observations = 3

	Coefficient	Std. err.	Z	P> z	[95% conf. i	nterval]
_y_B						
_cons	0667333	.1999043	-0.33	0.739	4585385	.325072
_y_C						
_cons	-0.0306035	.2236868	-0.14	0.891	4690216	.4078147

*Symbols for abbreviation: B for A-P screws, anteroposterior (A-P) screws; C for plate

For _y_B, the constant -0.67 represents the average mean difference between treatments A (P-A screws) and B in the AB design.

For _y_C, the constant -0.03 denotes the average mean difference between treatments A (P-A screws) and C in the AC design.

(D) Incidence of osteoarthritis grade progression: a detailed analysis for local sidesplitting inconsistency and global design inconsistency

Sid	Direct		Indirect		Difference		
e							
	Coef.	Std. Err.	Coef.	Std. Err.	Coef.	Std. Err.	P > z
AB	.7885385	.517013	.9290872	1.44603	140548	1.57399	0.92
*					7	5	9
A C	156470	.448913	530203	1.48090	.3737331	1.56995	.812
*	2	9	3	2		1	
BC	-	.898220	915677	.722751	.2129781	1.15416	.854
	1.128656	9	8	9		1	

1. Side-splitting inconsistency between direct and indirect evidence

*Symbols for abbreviation: A for P-A screws, posteroanterior (P-A) screws; B for A-P screws, anteroposterior (A-P) screws; C for plate

2. Design inconsistency

Multivariate meta-analysis

Variance-covariance matrix = proportional .5*I(2)+.5*J(2,2,1)

Method = reml	Number of dimensions	=	2
---------------	----------------------	---	---

Restricted log likelihood = -12.840438 Number of observations = 7

	Coefficient	Z	P> z	[95% conf.	interval]	
_y_B						
_cons	.7971654	.487554	1.64	0.102	158421	1.752752
_y_C						
groupB	1498756	1.758159	-0.09	0.932	-3.595803	3.296052
cons	1849159	.4317511	-0.43	0.688	-1.031133	.6613007

*Symbols for abbreviation: B for A-P screws, anteroposterior (A-P) screws; C for plate

For _y_B, the constant 0.80 represents the average difference of log odds ratio between treatments A (P-A screws) and B in the AB design.

For _y_C, the constant -0.18 denotes the average difference of log odds ratio between treatments A (P-A screws) and C in the AC design.

(E) Incidence of step-off \geq 2mm: a detailed analysis for local side-splitting inconsistency and global design inconsistency

Side	Direct		Indirect		Difference		
	Coef.	Std. Err.	Coef.	Std. Err.	Coef.	Std. Err.	<i>P</i> > z
AB	1.437214	.5185889	2131576	1.05369	1.650371	1.174392	0.160
A C	-1.010065	.801261	.64032	.8586722	1650385	1.174452	0.160
B C	7967799	.6844218	-2.447289	.9544347	1.650509	1.174468	0.160

1. Side-splitting	inconsistency	between	direct	and in	direct	evidence
1. Dide spinning	meensistemey	00000000	aneet		aneet	0,1001100

*Symbols for abbreviation: A for P-A screws, posteroanterior (P-A) screws; B for A-P screws, anteroposterior (A-P) screws; C for plate

3. Design inconsistency

Multivariate meta-analysis

Variance-covariance matrix = proportional .5*I(2)+.5*J(2,2,1)

Method = reml Number of dimensions =

Restricted log likelihood = -17.328236 Number of observations = 7

	Coefficient	Std. err.	Z	P > z	[95% conf.	interval]
_y_B						
_cons	1.437149	.5185729	2.77	0.006	.4207651	2.453533
_y_C						
groupB	1.650385	1.174452	1.41	0.160	6514979	3.952269
_cons	-1.010065	.0801261	-1.26	0.207	-2.580508	.5603773

*Symbols for abbreviation: B for A-P screws, anteroposterior (A-P) screws; C for plate

For _y_B, the constant 1.44 represents the average difference of log odds ratio between treatments A (P-A screws) and B in the AB design.

For _y_C, the constant -1.01 denotes the average difference of log odds ratio between treatments A (P-A screws) and C in the AC design.

2

(F) Incidence of non-unions: a detailed analysis for local side-splitting inconsistency and global design inconsistency

Sid	Direct		Indirect		Difference		
e							
	Coef.	Std. Err.	Coef.	Std. Err.	Coef.	Std. Err.	<i>P</i> > z
AB	144045	1.16712	.5808861	2.07650	724931	2.38270	0.76
	8	2		5	9	6	1
AC	149763	.823157	343369	2.43713	.1936063	2.57272	0.94
	6	6	9	7		8	0
BC	442337	1.43393	.1245603	1.65761	566898	2.19140	0.79
	8	8		8	1	9	6

1. Side-splitting inconsistency between direct and indirect evidence

*Symbols for abbreviation: A for P-A screws, posteroanterior (P-A) screws; B for A-P screws, anteroposterior (A-P) screws; C for plate

2. Design inconsistency

Multivariate meta-analysis

Variance-covariance matrix = proportional .5*I(2)+.5*J(2,2,1)

Method = ren	ml		N	Jumber o	of dimensions	=	2
Restricted lo	g likelihood	= -15.3345	8 N	Number o	of observations	=	9
	Coefficient	Std. err.	Z	P> z	[95% conf.	inte	rval]
_y_B							
des_ABC	4079477	2.481334	-0.16	0.869	-5.271274	4.4	55378
cons	0097875	1.426242	-0.01	0.995	2.80517	2.7	85595
_y_C							
des_AC	.9443646	2.216909	0.43	0.670	-3.400697	5.2	89426
des_BC	.5674831	3.206924	0,18	0.860	-5.717972	6.8	52938
_cons	9382696	2.025601	-0.46	0.643	-4.908375	3.0	31836

*Symbols for abbreviation: B for A-P screws, anteroposterior (A-P) screws; C for plate

For _y_B, the constant -0.01 represents the average difference of log odds ratio between treatments A (P-A screws) and B in the AB design.

For _y_C, the constant -0.94 denotes the average difference of log odds ratio between treatments A (P-A screws) and C in the AC design.

(G) Incidence of loss of dorsiflexion \geq 5 degrees: a detailed analysis for local sidesplitting inconsistency and global design inconsistency

Sid	Direct		Indirect		Difference		
e							
	Coef.	Std. Err.	Coef.	Std. Err.	Coef.	Std. Err.	P > z
AB	.2693329	.725961	1.25948	1.700976	990154	1.91475	0.60
*		6	7		5	9	5
* A C		6	7		5	9	5.
	977984	6 .604550	7 .012170	1.837991	5 990154	9 1.91475	5 0.60

1. Side-splitting inconsistency between direct and indirect evidence

*Symbols for abbreviation: A for P-A screws, posteroanterior (P-A) screws; B for A-P screws, anteroposterior (A-P) screws; C for plate

2. Design inconsistency

Multivariate meta-analysis

Variance-covariance matrix = proportional .5*I(2)+.5*J(2,2,1)

Method = reml Number of dimensions = 2	Method = reml
--	---------------

Restricted log likelihood = -1.009088	Number of observations $=$	2
---	----------------------------	---

-	0					
	Coefficient	Std. err.	Ζ	P > z	[95% conf.	. interval]
_y_B						
_cons	.4448779	.641702	0.69	0.488	8128349	1.702591
_y_C						
_cons	4448146	.477651	-0.93	0.352	-1.380993	.4913641

*Symbols for abbreviation: B for A-P screws, anteroposterior (A-P) screws; C for plate

For _y_B, the constant 0.44 represents the average difference of log odds ratio between treatments A (P-A screws) and B in the AB design.

For _y_C, the constant -0.44 denotes the average difference of log odds ratio between treatments A (P-A screws) and C in the AC design.

(H) Incidence of infections: a detailed analysis for local side-splitting inconsistency and global design inconsistency

Side	Direct		Indirect		Difference		
	Coef.	Std. Err.	Coef.	Std. Err.	Coef.	Std. Err.	P > z
AB	800117	1.28489	042691	0.946042	757425	1.59593	0.63
*		7	5	4	5	2	5
AC	.279788	.483800	668267	1.758577	.948005	1.81412	0.60
*		2	4			8	1
BC*	.392549	.725433	1.22737	1.596603	834820	1.72588	0.62
	5	8			1	9	9

1. Side-splitting inconsistency between direct and indirect evidence

*Symbols for abbreviation: A for P-A screws, posteroanterior (P-A) screws; B for A-P screws, anteroposterior (A-P) screws; C for plate

2. Design inconsistency

Multivariate meta-analysis

Variance-covariance matrix = proportional .5*I(2)+.5*J(2,2,1)

Method = reml	Number of dimensions =	2
Restricted log likelihood = -16.605115	Number of observations =	9

itestiteted io	g inkennoou	10.00311		
	Coefficient	Std. err.	z P > z	[95% conf. interval]
_y_B				
_cons	6980267	1.167725	-0.60 0.550	-2.986726 1.590673
_y_C				
groupB	6329755	1.440165	-0.44 0.660	-3.455647 2.189696
cons	.2603912	.478936	0.54 0.587	678306 1.199088

*Symbols for abbreviation: B for A-P screws, anteroposterior (A-P) screws; C for plate

For _y_B, the constant -0.70 represents the average difference of log odds ratio between treatments A (P-A screws) and B in the AB design.

For _y_C, the constant -0.26 denotes the average difference of log odds ratio between treatments A (P-A screws) and C in the AC design.

(I) Incidence of peroneal nerve injuries: a detailed analysis for local side-splitting inconsistency and global design inconsistency

Side	Direct		Indirect		Difference		
	Coef.	Std. Err.	Coef.	Std. Err.	Coef.	Std. Err.	P > z
AB	4128683	2.030471	3158613	1.749149	097007	2.681271	0.971
AC*	.2329864	.7309696	2.378235	4.818329	-	4.872255	0.660
					2.145248		
BC*	.4688036	1.279231	2.17737	3.850983	-	4.055917	0.674
					1.708566		

1. Side-splitting inconsistency between direct and indirect evidence

*Symbols for abbreviation: A for P-A screws, posteroanterior (P-A) screws; B for A-P screws, anteroposterior (A-P) screws; C for plate

2. Design inconsistency

Multivariate meta-analysis

Variance-covariance matrix = proportional .5*I(2)+.5*J(2,2,1)

Method = reml Number of dimensions = 2

	Coefficient	Std. err.	Z	$P > \mathbf{z} $	[95% conf.	interval]
_y_B						
_cons	.1742399	1.791823	0.10	0.923	-3.337669	3.686149
_y_C						
groupB	1.073153	2.436732	0.44	0.660	-3.702753	5.849059
_cons	.2329793	.7309681	0.32	0.750	-1.199692	1.66565

*Symbols for abbreviation: B for A-P screws, anteroposterior (A-P) screws; C for plate

For _y_B, the constant 0.17 represents the average difference of log odds ratio between treatments A (P-A screws) and B in the AB design.

For _y_C, the constant 0.23 denotes the average difference of log odds ratio between treatments A (P-A screws) and C in the AC design.

Figure d. Contribution plots

(A) AOFAS changes

			Direct comparisons in the network			
			AvsB	AvsC	BvsC	
Network meta-analysis estimates	Mixed estimates					
sis est		AvsB	22.2	38.9	38.9	
a-analy		AvsC	14.4	71.2	14.4	
rk met		BvsC	16.3	16.3	67.4	
Netwo						
	Indirect estimates					
Entire n	etwork		18.1	41.6	40.3	
. <u></u>						
Include	d studies		2	9	2	

*Symbols for abbreviation: A for P-A screws, posteroanterior (P-A) screws; B for A-P screws, anteroposterior (A-P) screws; C for plate; AOFAS changes, changes in The American Orthopedic Foot and Ankle Score

(B) VAS changes

			Direct comparisons in the network			
			Avs	sB Avs	C BvsC	
Network meta-analysis estimates	Mixed estimates					
sis est		AvsB	80	.4 9.8	9.8	
a-analy		AvsC	19	.1 61.	9 19.1	
rk met		BvsC	39	.6 39.	6 20.8	
Netwo				·		_
	Indirect estimates					
Entire r	network		44	.6 38.	2 17.2	
Include	d studies		2	2	1	

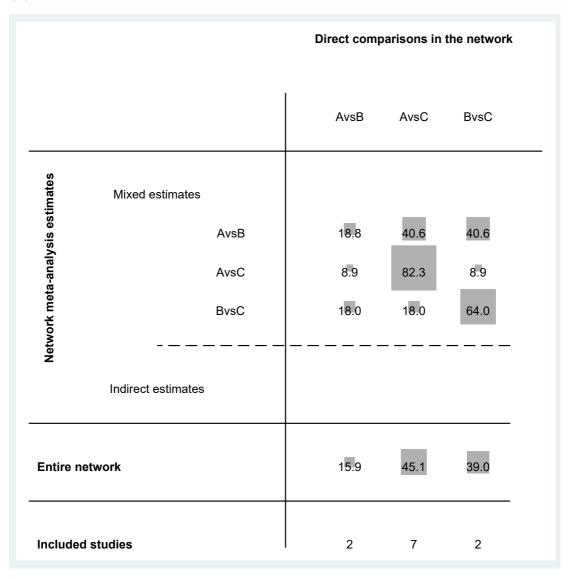
*Symbols for abbreviation: A for P-A screws, posteroanterior (P-A) screws; B for A-P screws, anteroposterior (A-P) screws; C for plate; VAS changes, changes in Visual Analogue Scale

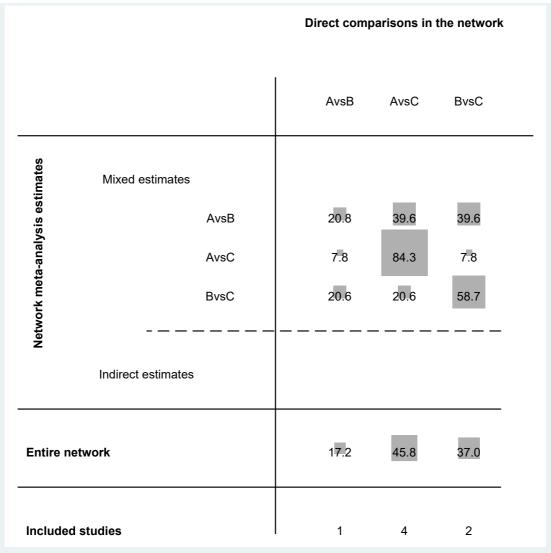
		Direct comparisons in the network			
		AvsB	AvsC	BvsC	
Network meta-analysis estimates	Mixed estimates AvsB	65.1	17.4	17.4	
a-anal)	AvsC	13.6	72.7	13.6	
rk met	BvsC	38.7	38.7	22.7	
Netwo					
	Indirect estimates				
Entire network		39.4	42.1	18.5	
Include	d studies	2	5	2	

(C) The incidence of osteoarthritis grade progression

		Direct comparisons in the network			
		AvsB	AvsC	BvsC	
Network meta-analysis estimates	Mixed estimates				
sis est	AvsB	67.4	16.3	16.3	
a-analy	AvsC	31.8	36.5	31.8	
rk met	BvsC	25.4	25.4	49.3	
Netwo					
	Indirect estimates				
Entire ne	etwork	40.3	26.7	33.0	
Included	studies	2	3	2	

(D) The incidence of step-off $\geq 2mm$


		Direct comparisons in the network			
		AvsB	AvsC	BvsC	
imates	Mixed estimates				
Network meta-analysis estimates	AvsB	50.1	25.0	25.0	
a-analy	AvsC	14.2	71.6	14.2	
ork met	BvsC	33.4	33.4	33.2	
Netwo		 			
	Indirect estimates				
Entire network		33.4	41.7	24.9	
Include	d studies	3	6	2	


(E) The incidence of non-unions

			Direct comparisons in the network				
				AvsB	AvsC	BvsC	
Network meta-analysis estimates	Mixed estimates						
sis est		AvsB		36.0	32.0	32.0	
a-analy		AvsC		16.9	66.2	16.9	
urk met		BvsC		24.6	24.6	50.8	
Netwo							
	Indirect estimates						
Entire network			26.5	39.8	33.7		
Include	ed studies			1	2	1	

(F) The incidence of loss of dorsiflexion ≥ 5 degrees

(G) The incidence of infections

(H) The incidence of peroneal nerve injuries