

Supplementary Material

Table i. PRISMA ScR checklist.¹¹

SECTION	ITEM	PRISMA-ScR CHECKLIST ITEM	REPORTED ON PAGE No.
TITLE			
Title	1	Identify the report as a scoping review.	1
ABSTRACT			
Structured	2	Provide a structured summary that includes (as	1
summary		applicable): background, objectives, eligibility criteria,	
		sources of evidence, charting methods, results, and	
		conclusions that relate to the review questions and	
		objectives.	
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of	2
		what is already known. Explain why the review	
		questions/objectives lend themselves to a scoping review	
		approach.	
Objectives	4	Provide an explicit statement of the questions and	2
		objectives being addressed with reference to their key	
		elements (e.g., population or participants, concepts, and	
		context) or other relevant key elements used to	
		conceptualize the review questions and/or objectives.	
METHODS			I
Protocol and	5	Indicate whether a review protocol exists; state if and	3
registration		where it can be accessed (e.g., a Web address); and if	
		available, provide registration information, including the	
		registration number.	
Eligibility criteria	6	Specify characteristics of the sources of evidence used as	3
		eligibility criteria (e.g., years considered, language, and	
		publication status), and provide a rationale.	
Information	7	Describe all information sources in the search (e.g.,	3
sources*		databases with dates of coverage and contact with	
		authors to identify additional sources), as well as the date	
		the most recent search was executed.	
Search	8	Present the full electronic search strategy for at least 1	3,
		database, including any limits used, such that it could be	Supplementary
		repeated.	file 2
Selection of	9	State the process for selecting sources of evidence (i.e.,	3
sources of		screening and eligibility) included in the scoping review.	
evidence†			

Data charting	10	Describe the methods of charting data from the included	4
Data charting	10	Describe the methods of charting data from the included	4
process‡		sources of evidence (e.g., calibrated forms or forms that have been tested by the team before their use, and	
		whether data charting was done independently or in	
		duplicate) and any processes for obtaining and confirming	
Data ita wa	4.4	data from investigators.	C
Data items	11	List and define all variables for which data were sought	Supplementary
		and any assumptions and simplifications made.	File 3
Critical appraisal of	12	If done, provide a rationale for conducting a critical	N/A
individual sources		appraisal of included sources of evidence; describe the	
of evidence§		methods used and how this information was used in any	
		data synthesis (if appropriate).	
Synthesis of results	13	Describe the methods of handling and summarizing the	4
		data that were charted.	
RESULTS			
Selection of	14	Give numbers of sources of evidence screened, assessed	5 / Figure 1
sources of		for eligibility, and included in the review, with reasons for	
evidence		exclusions at each stage, ideally using a flow diagram.	
Characteristics of	15	For each source of evidence, present characteristics for	5
sources of		which data were charted and provide the citations.	
evidence			
Critical appraisal	16	If done, present data on critical appraisal of included	N/A
within sources of		sources of evidence (see item 12).	
evidence			
Results of	17	For each included source of evidence, present the relevant	5-10
individual sources		data that were charted that relate to the review questions	
of evidence		and objectives.	
Synthesis of results	18	Summarize and/or present the charting results as they	5-10
		relate to the review questions and objectives.	
DISCUSSION		•	
Summary of	19	Summarize the main results (including an overview of	11-12
evidence		concepts, themes, and types of evidence available), link to	
		the review questions and objectives, and consider the	
		relevance to key groups.	
Limitations	20	Discuss the limitations of the scoping review process.	12
Conclusions	21	Provide a general interpretation of the results with respect	12
		to the review questions and objectives, as well as potential	
		implications and/or next steps.	
FUNDING			1
Funding	22	Describe sources of funding for the included sources of	12
		evidence, as well as sources of funding for the scoping	
		review. Describe the role of the funders of the scoping	
		review.	

Supplementary material ii: Search strategy (PubMed/MEDLINE).

1. ((((((leg) OR (lower limb)) OR (thigh)) OR (lower extremity)) OR (femur*)) OR (tibia*) OR (fibula*)) OR (ankle) OR (knee)

2. osteomyelitis[Title/Abstract]

3. (((((((((surg*) OR (debridement)) OR (ilizarov)) OR (fixator)) OR (corticotomy)) OR (amputation)) OR (reconstruction)) OR (limb salvage)) OR (limb sparing)) OR (graft)) OR (treat*) OR (correction)

Search: #1 AND #2 AND #3

Search: #1 AND #2 AND #3 expanded:

("leg"[MeSH Terms] OR "leg"[All Fields] OR ("lower extremity"[MeSH Terms] OR ("lower"[All Fields] AND "extremity"[All Fields]) OR "lower extremity"[All Fields] OR ("lower"[All Fields] AND "limb"[All Fields]) OR "lower limb"[All Fields]) OR ("thigh"[MeSH Terms] OR "thigh"[All Fields] OR "thighs"[All Fields] OR "thigh s"[All Fields]) OR ("lower extremity"[MeSH Terms] OR ("lower"[All Fields] AND "extremity"[All Fields]) OR "lower extremity"[All Fields]) OR "femur*"[All Fields] OR "tibia*"[All Fields] OR "fibula*"[All Fields] OR ("ankle"[MeSH Terms] OR "ankle"[All Fields] OR "ankle joint"[MeSH Terms] OR ("ankle"[All Fields] AND "joint"[All Fields]) OR "ankle joint"[All Fields] OR "ankles"[All Fields] OR "ankle s"[All Fields]) OR ("knee"[MeSH Terms] OR "knee"[All Fields] OR "knee joint"[MeSH Terms] OR ("knee"[All Fields] AND "joint"[All Fields]) OR "knee joint"[All Fields])) AND "osteomyelitis"[Title/Abstract] AND ("surg*"[All Fields]) OR ("debride"[All Fields] OR "debrided"[All Fields] OR "debridement"[MeSH Terms] OR "debridement"[All Fields] OR "debridements" [All Fields] OR "debrides" [All Fields] OR "debriding" [All Fields] OR "debridment"[All Fields] OR "debridments"[All Fields]) OR ("ilizarov"[All Fields] OR "ilizarov s"[All Fields]) OR ("fixate"[All Fields] OR "fixated"[All Fields] OR "fixates"[All Fields] OR "fixating"[All Fields] OR "fixation"[All Fields] OR "fixational"[All Fields] OR "fixations"[All Fields] OR "fixator"[All Fields] OR "fixator s"[All Fields] OR "fixators"[All Fields]) OR ("corticotomies"[All Fields] OR "corticotomy"[All Fields]) OR ("amputate"[All Fields] OR "amputated"[All Fields] OR "amputating"[All Fields] OR "amputation"[MeSH Terms] OR "amputation" [All Fields] OR "amputations" [All Fields] OR "amputed" [All Fields]) OR ("reconstruct" [All Fields] OR "reconstructability" [All Fields] OR "reconstructable" [All Fields] OR "reconstructed"[All Fields] OR "reconstructible"[All Fields] OR "reconstructing"[All Fields] OR "reconstructional" [All Fields] OR "reconstructive surgical procedures" [MeSH Terms] OR ("reconstructive" [All Fields] AND "surgical" [All Fields] AND "procedures" [All Fields]) OR "reconstructive surgical procedures" [All Fields] OR "reconstruction" [All Fields] OR "reconstructions" [All Fields] OR "reconstructive"[All Fields] OR "reconstructs"[All Fields]) OR ("limb salvage"[MeSH Terms] OR ("limb"[All Fields] AND "salvage"[All Fields]) OR "limb salvage"[All Fields]) OR (("extremities"[MeSH Terms] OR "extremities"[All Fields] OR "limb"[All Fields]) AND ("spare"[All Fields] OR "spared"[All Fields] OR "spares"[All Fields] OR "sparing"[All Fields])) OR ("graft s"[All Fields] OR "grafted"[All Fields] OR "graftings"[All Fields] OR "transplantation"[MeSH Subheading] OR "transplantation"[All Fields] OR "grafting"[All Fields] OR "transplantation"[MeSH Terms] OR "grafts"[All Fields] OR "transplants"[MeSH Terms] OR "transplants"[All Fields] OR "graft"[All Fields]) OR "treat*"[All Fields] OR ("correct"[All Fields] OR "correctability"[All Fields] OR "correctable"[All Fields] OR "corrected"[All Fields] OR "correctible"[All Fields] OR "correcting" [All Fields] OR "correction" [All Fields] OR "corrections" [All Fields] OR "corrective" [All Fields] OR "correctives" [All Fields] OR "correctness" [All Fields] OR "corrects" [All Fields]))

Supplementary material iii: Data extraction sheet.

- a. Study title/Authors/Date of publication/Location of study
- b. Type of publication/Study design
- c. Study eligibility criteria
- d. Number of study participants/Mean age/Gender breakdown
- e. Details of surgical intervention and treatment groups
- f. Outcomes Outcome name/Definition provided/Patient follow-up/Methods of outcome measurement/Patient-reported details

Table iv: List of included 99 studies.

First author (et al)	Date of publication	Geographical location	Study design	Study participants, n	Mean age, yrs
Abulaiti	2017	China	Cohort study	35	35
Alemdar	2015	Turkey	Case series	15	36.6
Al-Mousawi	2020	Italy	Case series	12	63
Antonini	2019	Italy	Case series	18	48.7
Antonini	2017	Italy	Case series	11	56
Anugraha	2020	UK	Case series	13	59
Aytaç	2014	Germany	Retrospective cohort study	67	52
Bauer	2018	France	Case series	55	37
Borens	Registered 2014	Switzerland	RCT (trails registry)	15 (estimated)	ТВС
Bu	2020	China	Case series	12	44.8
Buono	2018	Switzerland	Case series	24	41
Campbell	2011	Australia	Retrospective cohort study	12	39
Centofanti	2013	Italy	Case series	390	Not reported
Chadayammuri	2017	USA	Case series	142	46.8
Cho	2018	South Korea	Case series	40	46.9
Clerc	2020	France	Cohort study	37	40
Dai	2020	China	Case series	68	37.2
Deng	2014	China	Case series	15	44.5
Drampalos	2020	UK	Case series	52	53
Dróżdż	2017	Poland	Case series	54	47.3
El-Sayed	2013	Egypt	Case series	20	37.5
Eralp	2012	Turkey	Cohort study	49	External group mean 41, Combined group mean 39
Eralp	2016	Turkey	Case series	74	35.9
Ferrando	2017	Spain	Case series	25	Group 1 mean 50, Group 2 mean 48
Finelli	2019	Brazil	RCT	44	RIA group mean 33.6, CR

					group mean 36.1
Gaiarsa	2019	Brazil	Case series	18	33.6
Galitzine	2020	UK	Case series	50	Not reported
Garcia del Pozo	2018	Spain	Cohort study	116	53
Gerlach	2017	Germany	Case series	105	Not reported
Gokalp	2013	Turkey	Case series	30	24.4
Hernigou	2017	France	RCT	80	Standard graft mean 42.3, Bone marrow graft mean 40.4
Hou	2017	China	Case series	45	40.6
Huang	2017	China	RCT	80	Not reported
Humm	2018	UK	Case series	21	49
Jeong	2014	South Korea	Case series	15	46.7
Jiang	2012	China	Case series	394	Median 42
Ju	2018	China	Case series	18	47
Kanakaris	2014	UK	Case series	24	44.5
Khan	2014	UK	Case series	20	44.5
Kirienko	2013	Italy	Case series	13	42.2
Lam	2019	USA	Case series	67	51.4
Lê Thua	2015	Vietnam	Case series	29	48.5
Li	2019	China	Case series	18	Range 14 to 57
Lin	2012	Taiwan	Case series	16	36
Lin	2017	China	Case series	76	Not reported
Lindfors	2017	Multinational: Finland, Italy, Netherlands, Germany, Azerbaijan and Poland	Case series	116	48
Liu	2015	China	Case series	20	31.5
Lowenberg	2019	USA	Case series	127	54
Lowenberg	2013	USA	Case series	34	40
Lu	2013	China	Case series	11	38

Luo	2016	China	Retrospective case control study	51	Combination therapy mean 43.8, PMMA mean 42.3
Luo	2017	China	Case series	67	32
Luo	2020	China	Case series	17	41.9
Ma	2018	China	Case series	255	Median 45.5
Malat	2018	Germany	Retrospective cohort study	50	57.8
Marais	2015	South Africa	Case series	109	39.8
McNally	2016	UK	Case series	100	51.6
Microbion	Registered 2015	USA	RCT (trials registry)	29 (enrolled)	TBC
Moore	2015	USA	Retrospective cohort study	30	Internal fixation mean 46, External fixation mean 48
Niikura	2016	Japan	Case series	13	53.2
Olasinde	2011	Nigeria	Case series	20	21.5
Opara	2020	Nigeria	Case series	21	Range 21-62
Özkan	2020	Turkey	Case series	45	33.8
Pesch	2020	Germany	Case series	35	56.4
Petfield	2019	USA	Case series	112	Median 24
Qin	2019	China	Retrospective cohort study	74	Calcium sulphate group mean 39.4, Irrigation group mean 39.6
Qin	2018	China	Case series	35	38
Qiu	2017	China	Cohort study	40	Bead group mean 38.6, Spacer group mean 36.9

Ren	2020	China	Retrospective cohort study	66	FVFG mean 36.1 , IBT mean 37.4
Rod-Fleury	2011	Switzerland	Case series	49	Median 41
Rüschenschmidt	2020	Germany	Case series	71	External fixator group mean 56, Internal fixator group mean 59
Schröter	2015	Germany	Cohort study	18	51.8
Sen	2019	Turkey	Case series	32	Group A mean 39, Group B mean 42
Sen	2020	Turkey	Retrospective cohort study	23	37.2
Shahid	2013	UK	Case series	12	43.3
Shen	2015	China	Case series	14	47
Sigmund	2020	Multinational: UK, Austria and The Netherlands	Cohort study	47	Group 1 mean 48.9, Group 2 mean 50.9
Sun	2018	China	Case series	72	Experiment group mean 22.1, Control group mean 23.1
Tarng	2020	Taiwan	Case series	27	42.3
Tetsworth	2017	USA	Case series	42	Group A mean 38.2, Group B mean 39.2
Tong	2017	China	Case series	39	39.2
Torres	2014	Brazil	Case series	11	38.9
Wang ¹	2017	China	Case series	125	IF group mean 42.0, EF group mean 43.5
Wang	2016	China	Case series	32	40
Wang (2)	2017	China	Case series	15	34

Wang	2019	China	Case series	424	37.9
Will	2011	USA	Case series	23	40.9
Windhofer	2017	Austria	Case series	26	36.9
Wu	2017	China	Case series	36	41
Xu	2014	China	Case series	217	35.6
Yang	2013	China	Case series	15	39
Yikemu	2019	China	Case series	78	44.5
Yilihamu	2017	China	Cohort study	153	36.4
Yu	2017	China	Case series	13	39
Yushan	2020	China	Case series	37	40.1
Yusof	2012	Malaysia	Case series	11	39
Zhang	2016	China	Case series	18	36.1
Zhiju	2018	China	RCT	120	Control group mean 35.4, Experimental group mean 36.6
Zhou	2020	China	Case series	42	43.7

CR, conventional reaming; EF, external fixation; FVFG, free vascularized fibular graft; IBT, Ilizarov bone transport; IF, internal fixation; PMMA, polymethyl methacrylate; RIA, reamer irrigator aspirator.

Supplementary material iii: Reference list of included studies

Abulaiti A, Yilihamu Y, Yasheng T, et al. The psychological impact of external fixation using the Ilizarov or Orthofix LRS method to treat tibial osteomyelitis with a bone defect. *Injury*. 2017;48(12):2842-6.

Alemdar C, Azboy I, Atiç R, et al. Management of infectious fractures with "non-contact plate" (NCP) method. *Acta Orthop Belg*. 2015;81:523-529

Al-Mousawi A, Sanese G, Baljer B, et al. Use of the keystone perforator island flap in the treatment of chronic lower extremity wounds complicated by osteomyelitis. *Injury*. 2020;51(3):744-9.

Antonini A, Rossello C, Salomone C, et al. Bone defect management with vascularized fibular grafts in the treatment of grade iii-iv osteomyelitis. *Handchirurgie, Mikrochirurgie, Plastische Chirurgie.* 2019;51(6):444-52.

Antonini A, Rossello C, Salomone C, et al. The peroneus brevis flap in the treatment of bone infections of the lower limb. Injury, *Int J Care*. 48S3. 2017; S76–S79.

Anugraha A, Jehangir N, Alqubaisi M, et al. End-capping of amputation stumps with a local antibiotic containing hydroxyapatite bio-composite: A report of 13 cases with chronic lower limb osteomyelitis. *J Orthop.* 2020;17:124-6.

Aytaç S, Schnetzke M, Swartman B, et al. Posttraumatic and postoperative osteomyelitis: surgical revision strategy with persisting fistula. *Arch Orthop Trauma Surg.* 2014;134(2):159-165.

Bauer T, Klouche S, Grimaud O, et al. Treatment of infected non-unions of the femur and tibia in a French referral center for complex bone and joint infections: Outcomes of 55 patients after 2 to 11 years. *Orthop Traumatol Surg Res.* 2018;104(1):137-45.

Bu ZY, Hu LJ, Li C, et al. Clinical analysis of application of antibiotic bone cement spacer combined with membrane induction technology in treatment of osteomyelitis after femoral intramedullary nail operation: A case series. *JPMPA*. 2020(2):360-362.

Buono P, Castus P, Dubois-Ferriere V, et al. Muscular versus non-muscular free flaps for soft tissue coverage of chronic tibial osteomyelitis. *World Journal of Plastic Surgery*. 2018;7(3):294-300.

Campbell R, Berry MG, Deva A, et al. Aggressive management of tibial osteomyelitis shows good functional outcomes. *Eplasty*. 2011;11:e3.

Centofanti F, Fisichella L, Orani R, et al. Decennial clinical records of Codivilla-Putti Institute about the treatment of infected nonunions using Ilizarov's method. *J Orthop Traumatol*. 2013;14(1):S88.

Chadayammuri V, Herbert B, Hao J, et al. Factors associated with adverse postoperative outcomes in patients with long bone post-traumatic osteomyelitis. *Eur J Orthop Surg Traumatol*. 2017;27(7):877-882.

Cho JW, Kim J, Cho WT, et al. Antibiotic coated hinged threaded rods in the treatment of infected nonunions and intramedullary long bone infections. *Injury*. 2018;49(10):1912-21.

Clerc A, Zeller V, Marmor S, et al. Hematogenous osteomyelitis in childhood can relapse many years later into adulthood: A retrospective multicentric cohort study in France. *Medicine*. 2020:1-8.

Dai C, Huang K, Ma G. Efficacy of one-stage operation on the traumatic osteomyelitis in middle and distal tibia: A retrospective analysis of 68 cases. *Acta Medica Mediterranea*. 2020;36(3):1881-6.

Deng Z, Cai L, Jin W, et al. One-stage reconstruction with open bone grafting and vacuum-assisted closure for infected tibial non-union. *Arch Med Sci*. 2014;10(4):764-772.

Drampalos E, Mohammad HR, Pillai A. Augmented debridement for implant related chronic osteomyelitis with an absorbable, gentamycin loaded calcium sulfate/hydroxyapatite biocomposite. *J Orthop*. 2020;17:173-179.

Dróżdż M, Rak S, Bartosz P, et al. Results of the treatment of infected nonunions of the lower limbs using the Ilizarov method. Ortopedia, traumatologia, rehabilitacja. 2017;19(2):111-25.

El-Sayed MMH, Gaballah S, Hosny G, et al. Management of infected nonunion of the femur in adults using the Ilizarov technique. *Eur J Orthop Surg. Traumatol.* 2014;5(3):285-291.

Eralp L, Kocaoglu M, Celiktas M, et al. Is acute compression and distraction superior to segmental bone transport techniques in chronic tibial osteomyelitis ? Comparison of distraction osteogenesis techniques. *Acta Orthopaedica Belgica*. 2016;82(3):599-609.

Eralp L, Kocaoglu M, Polat G, et al. A comparison of external fixation alone or combined with intramedullary nailing in the treatment of segmental tibial defects. *Acta Orthopaedica Belgica*. 2012;78(5):652-9.

Ferrando A, Part J, Baeza J. Treatment of cavitary bone defects in chronic osteomyelitis: bioactive glass s53p4 vs. calcium sulphate antibiotic beads. *JBJI*. 2017;2(4):194-201.

Finelli CA, dos Reis FB, Fernandes HA, et al. Intramedullary reaming modality for management of postoperative long bone infection: a prospective randomized controlled trial in 44 patients. *Patient Safety in Surgery*. 2019;13(1):In press.

Gaiarsa GP, Dos Reis PR, Kojima KE, et al. A retrospective case-series on the use of s53p4 bioactive glass for the adjunctive treatment of septic diaphyseal non-union. *Acta Ortop Bras.* 2019;27(5):273-275.

Galitzine S, Wilson K, Edington M, et al. Patients' reported experiences and outcomes following surgical excision of lower limb osteomyelitis and microvascular free tissue reconstruction under 'awake' epidural anaesthesia and sedation. *The Surgeon*. 2020;29.

Garcia Del Pozo E, Collazos J, Carton JA, et al. Factors predictive of relapse in adult bacterial osteomyelitis of long bones. *BMC Infectious Diseases*. 2018;18(1):635.

Gerlach UJ, Schoop R, Grimme C, et al. Reconstruction of large scale bone defects of the upper and lower leg using bone transport, Masquelet technique or a combination of both methods. *Arch Orthop Trauma Surg*. 2017;137:1603.

Gokalp MA, Guner S, Ceylan MF, et al. Results of treatment of chronic osteomyelitis by "gutter procedure and muscle flap transposition operation". *Eur J Orthop Surg Traumatol*. 2014;24(3):415-419.

Hernigou P, Dubory A, Homma Y, et al. Single-stage treatment of infected tibial non-unions and osteomyelitis with bone marrow granulocytes precursors protecting bone graft. *Int Orthop*. 2018;42(10):2443-50.

Hou L, Shi H, Wang M, et al. Effect of antibiotic bone cement on treatment of traumatic tibial osteomyelitis. *Biomedical Research*. 2017;28(21):9452-5.

Huang K, Lin B, Guo Q, et al. Research on the clinical efficacy of the combination of Chinese traditional medicine and western medicine on the chronic traumatic tibial osteomyelitis. *Pak J Pharm Sci.* 2018;31(6):2841-2845.

Humm G, Noor S, Bridgeman P, et al. Adjuvant treatment of chronic osteomyelitis of the tibia following exogenous trauma using OSTEOSET-T: a review of 21 patients in a regional trauma centre. *Strategies Trauma Limb Reconstr.* 2014;9(3):157-161.

Jeong JJ, Lee HS, Choi YR, et al. Surgical treatment of non-diabetic chronic osteomyelitis involving the foot and ankle. *Foot Ankle Int*. 2012;33(2):128-132.

Jiang N, Ma YF, Jiang Y, et al. Clinical characteristics and treatment of extremity chronic Osteomyelitis in Southern China. *Medicine (United States).* 2015;94(42):e1874.

Ju J, Li L, Zhou R, et al. Combined application of latissimus dorsi myocutaneous flap and iliac bone flap in the treatment of chronic osteomyelitis of the lower extremity. *J Orthop Surg Res*. 2018;13(1):In press.

Kanakaris N, Gudipati S, Tosounidis T, et al. The treatment of intramedullary osteomyelitis of the femur and tibia using the reamer-irrigator-aspirator system and antibiotic cement rods. *Bone Joint J.* 2014;96(6):783-788.

Khan MA, Jose RM, Taylor C, et al. Free radial forearm fasciocutaneous flap in the treatment of distal third tibial osteomyelitis. Annals of Plastic Surgery. 2012;68(1):58-61.

Kirienko A, Peccati A, Arnaldi E, et al. Ankle arthrodesis and leg lengthening in the tibial distal defect. *J Orthopaed Traumatol*. 2013; 14(Suppl 1):S47–S82.

Lam A, Richardson SS, Buksbaum J, et al. Chronic osteomyelitis of the tibia and ankle treated with limb salvage reconstruction. *EBJIS*. 2019;4(6):306-13.

Lê Thua TH, Boeckx WD, Zirak C, et al. Free intra-osseous muscle transfer for treatment of chronic osteomyelitis. *J Plast Surg Hand Surg*. 2015;49(5):306-10.

Li J, Zhang H, Qi B, et al. Outcomes of vacuum sealing drainage treatment combined with skin flap transplantation and antibiotic bone cement on chronic tibia osteomyelitis: A case series study. *Medical Science Monitor*. 2019;25:5343-5349.

Lin CC, Chen CM, Chiu FY, et al. Staged protocol for the treatment of chronic tibial shaft osteomyelitis with Ilizarov's technique followed by the application of intramedullary locked nail. *Orthopedics*. 2012;35(12):e1769-74.

Lin B, Huang K, Yu H. Surgical treatment for 76 patients with posttraumatic osteomyelitis of the tibia. *Biomedical Research (India).* 2017;28(8):3585-8.

Lindfors N, Geurts J, Drago L, et al. Antibacterial bioactive glass S53P4 for chronic bone infections: A multinational study. *Adv Exp Med Biol.* 2017;971:81-92.

Liu Y, Song J, Xu LL, et al. Vascularized fibular graft combined with vacuum assisted closure in the reconstruction of tibial defects. *Afr J Tradit Complement Altern Med.* 2015;12(6):27-32.

Lowenberg DW, DeBaun M, Suh GA. Newer perspectives in the treatment of chronic osteomyelitis: A preliminary outcome report. *Injury*. 2019;50:S56-S61.

Lowenberg DW, Buntic RF, Buncke GM, et al. Long-term results and costs of muscle flap coverage with ilizarov bone transport in lower limb salvage. *J Orthop Trauma*. 2013;27(10):576-81

Lu W, Liu G, Li B, et al. Combined debridement, bone graft and articular cavity sealing using synovium in treating metaphyseal osteomyelitis involving knee joints. *Exp Ther Med*. 2013;5(1):253-256.

Luo S, Jiang T, Yang Y, et al. Combination therapy with vancomycin loaded calcium sulfate and vancomycin loaded PMMA in the treatment of chronic osteomyelitis. *BMC Musculoskeletal Disorders*. 2016;17:502.

Luo F, Wang X, Wang S, et al. Induced membrane technique combined with two-stage internal fixation for the treatment of tibial osteomyelitis defects. *Injury*. 2017;48(7):1623-1627.

Luo Z, Dong Z, Ni J, et al. Distally based peroneal artery perforator-plus fasciocutaneous flap to reconstruct soft tissue defect combined with chronic osteomyelitis in the lateral malleolus. *Int J Low Extrem Wounds*. 2022 Dec;21(4):464-447.

Ma X, Han S, Ma J, et al. Epidemiology, microbiology and therapeutic consequences of chronic osteomyelitis in northern China: a retrospective analysis of 255 patients. *Sci Rep.* 2018;8(1):14895.

Malat TA, Glombitza M, Dahmen J, et al. The use of bioactive glass s53p4 as bone graft substitute in the treatment of chronic osteomyelitis and infected non-unions: a retrospective study of 50 patients. *Z Orthop Unfall*. 2018;156:152–159.

Marais LC, Ferreira N, Aldous C, et al. A modified staging system for chronic osteomyelitis. *J Orthop*. 2015;12:184-192.

McNally MA, Ferguson JY, Lau ACK, et al. Single-stage treatment of chronic osteomyelitis with a new absorbable, gentamicin-loaded, calcium sulphate/hydroxyapatite biocomposite: A prospective series of 100 cases. *Bone Joint J.* 2016;98(9):1289-1296.

Moore J, Berberian WS, Lee M. An analysis of 2 fusion methods for the treatment of osteomyelitis following fractures about the ankle. *Foot Ankle Int.* 2015;36(5):547-55.

Niikura T, Lee SY, Iwakura T, et al. Antibiotic-impregnated calcium phosphate cement as part of a comprehensive treatment for patients with established orthopaedic infection. *J Orthop*. 2016;21(4):539-45.

Olasinde AA, Oluwadiya KS, Adegbehingbe OO. Treatment of brodie's abscess: Excellent results from curettage, bone grafting and antibiotics. *Singap Med J.* 2011;52(6):436-439.

Opara KO, Nwagbara IC. The use of sural island musculo fasciocutaneous flap, in the management of chronic osteomyelitis of the tibia. *Niger J Clin Pract*. 2018;21(6):698-702.

Özkan S, Adanaş C. Does the causative microorganism and etiology of trauma affect the duration of treatment in chronic tibia osteomyelitis? *Edizioni Minerva Medica*. 2020; 33(4):189-192.

Pesch S, Hanschen M, Greve F, et al. Treatment of fracture-related infection of the lower extremity with antibiotic-eluting ceramic bone substitutes: case series of 35 patients and literature review. *Infection*. 2020;48(3):333-44.

Petfield JL, Tribble DR, Potter BK, et al. Is bone loss or devascularization associated with recurrence of osteomyelitis in wartime open tibia fractures? *Clin Orthop Relat Res.* 2019;477(4):789-801.

Qin C-H, Zhang H-A, Chee Y-H, et al. Comparison of the use of antibiotic-loaded calcium sulphate and wound irrigation-suction in the treatment of lower limb chronic osteomyelitis. *Injury*. 2019;50(2):508-14.

Qin C, Xu L, Liao J, et al. Management of osteomyelitis-induced massive tibial bone defect by monolateral external fixator combined with antibiotics-impregnated calcium sulphate: a retrospective study. *Biomed Res. Int.* 2018:1-8.

Qiu X, Chen Y, Qi X, et al. Outcomes of cement beads and cement spacers in the treatment of bone defects associated with post-traumatic osteomyelitis. *BMC Musculoskeletal Disorders*. 2017;18:1-6.

Ren GH, Li R, Hu Y, et al. Treatment options for infected bone defects in the lower extremities: free vascularized fibular graft or Ilizarov bone transport? *Orthop Surg.* 2020;15(1):439.

Rod-Fleury T, Dunkel N, Assal M, et al. Duration of post-surgical antibiotic therapy for adult chronic osteomyelitis: A single-centre experience. *Int Orthop*. 2011;35(11):1725-1731.

Rüschenschmidt M, Glombitza M, Dahmen J, et al. External versus internal fixation for arthrodesis of chronic ankle joint infections - A comparative retrospective study. *Foot Ankle Surg.* 2020;26(4):398-404.

Schröter S, Ateschrang A, Flesch I, et al. First mid-term results after cancellous allograft vitalized with autologous bone marrow for infected femoral non-union. *Wien Klin Wochenschr*. 2016;128(21):827-836.

Sen C, Demirel M, Sağlam Y, et al. Acute shortening versus bone transport for the treatment of infected femur non-unions with bone defects. *Injury*. 2019;50(11):2075-83.

Sen C, Akgul T, Tetsworth KD, et al. Combined technique for the treatment of infected nonunions of the distal femur with bone loss: short supracondylar nail—augmented acute shortening/lengthening. *J Orthop Trauma*. 2020;34(9):476-81.

Shahid M, Hussain A, Bridgeman P, Bose D. Clinical outcomes of the Ilizarov method after an infected tibial nonunion. *Arch Trauma Res.* 2013 Aug;2(2):71-75.

Shen L, Dong Y, Zhang C, et al. Chronic osteomyelitis treatment: A clinical and pharmaco-kinetic study of vancomycin impregnated calcium sulphate. *J Med Imaging & Health Infor*. 2015;5(1):36-42.

Sigmund IK, Ferguson J, Govaert GAM, et al. Comparison of Ilizarov bifocal, acute shortening and relengthening with bone transport in the treatment of infected, segmental defects of the tibia. *J Clin Med.* 2020; 28;9(2):279.

Sun PQ, Ma Y, Zhang YC, et al. Application of antibiotic impregnated beads on the patients with tibial chronic osteomyelitis. *Pak J Pharm Sci*. 2018;31(6):2783-2786.

Tarng YW, Lin KC. Management of bone defects due to infected non-union or chronic osteomyelitis with autologous non-vascularized free fibular grafts. *Injury*. 2020;51(2):294-300.

Tetsworth K, Paley D, Sen C, et al. Bone transport versus acute shortening for the management of infected tibial non-unions with bone defects. *Injury*. 2017;48(10):2276-2284.

Tong K, Zhong Z, Peng Y, et al. Masquelet technique versus Ilizarov bone transport for reconstruction of lower extremity bone defects following posttraumatic osteomyelitis. Injury. 2017;48(7):1616-1622.

Torres LR, Paganelli PM, Dos Santos RP, et al. Extensor digitorum brevis flap on the treatment of lower limb injuries. *Acta Ortopedica Brasileira*. 2014;22(2):86-89.

Wang Y, Jiang H, Deng Z, et al. Comparison of monolateral external fixation and internal fixation for skeletal stabilisation in the management of small tibial bone defects following successful treatment of chronic osteomyelitis. *Biomed Res Int*. 2017;2017:1-8.

Wang X, Luo F, Huang K, et al. Induced membrane technique for the treatment of bone defects due to post-traumatic osteomyelitis. *Bone Joint Res*. 2016;5(3):101-105.

Wang X, Wang Z, Fu J, et al. Induced membrane technique for the treatment of chronic hematogenous tibia osteomyelitis. *BMC Musculoskeletal Disorders*. 2017;18:1-7.

Wang X, Wang S, Fu J, et al. Risk factors associated with recurrence of extremity osteomyelitis treated with the induced membrane technique. *Injury*. 2020;51(2):307-11.

Will RE, Fleming ME, Lafferty PM, et al. Low complication rate associated with raising mature flap for tibial nonunion reconstruction. *J Trauma*. 2011;71(6):1709-14.

Windhofer C, Muller F, Neureiter H. Experience in reconstruction of osteomyelitis defects in upper and lower extremities and the current therapy protocol in the UKH Salzburg. *Arch Orthop Trauma Surg*. 2017;137:1603-4.

Wu H, Shen J, Yu X, et al. Two stage management of Cierny-Mader type IV chronic osteomyelitis of the long bones. *Injury*. 2017;48(2):511-8.

Xu Y-Q, Zhu Y-L, Fan X-Y, et al. Implant-related infection in the tibia: surgical revision strategy with vancomycin cement. *Scientific World Journal*. 2014:124864.

Yikemu X, Tuxun A, Nuermaimaiti M, et al. Effects of vacuum sealing drainage combined with Ilizarov bone transport technique in the treatment of tibial traumatic osteomyelitis. *Med Sci.* 2019;25:6864-6871.

Yilihamu Y, Keremu A, Yang C, Geng S, Fu C, et al. A minimally invasive modified reverse sural adipofascial flap for treating posttraumatic distal tibial and calcaneal osteomyelitis. *Int J Low Extrem Wound*. 2013;12(4):279-85.

Abulaiti A, et al. Outcomes of post-traumatic tibial osteomyelitis treated with an Orthofix LRS versus an Ilizarov external fixator. *Injury*. 2017;48(7):1636-43.

Yu X, Wu H, Li J, et al. Antibiotic cement-coated locking plate as a temporary internal fixator for femoral osteomyelitis defects. *Int Orthop*. 2017;41(9):1851-7.

Yushan M, Ren P, Abula A, et al. Bifocal or trifocal (double-level) bone transport using unilateral rail system in the treatment of large tibial defects caused by infection: a retrospective study. *Orthop Surg.* 2020;12(1):184-93.

Yusof NM, Halim AS. Outcomes of infected grade IIIB open tibial fractures. *Singapore Medical Journal*. 2012;53(9):591-4.

Zhang S, Wang H, Zhao J, et al. Treatment of post-traumatic chronic osteomyelitis of lower limbs by bone transport technique using mono-lateral external fixator: Follow-up study of 18 cases. *J Orthop Sci.* 2016;21(4):493-99.

Zhiju W, Binfeng W, Hui L, et al. Clinical effects of antibiotic-impregnated cement on the treatment of traumatic shinbone osteomyelitis. *Acta Medica Mediterranea*. 2018;34(4):1101-4.

Zhou CH, Ren Y, Ali A, et al. Single-stage treatment of chronic localized tibial osteomyelitis with local debridement and antibiotic-loaded calcium sulfate implantation: a retrospective study of 42 patients. *J Orthop Surg Res.* 2020;15(1):201.

ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). Identifier NCT02436876, Study to Assess Safety and Clinical Activity of Local MBN-101 in Treatment of Infected Bone Sites; 2015 April 28. Available from: https://clinicaltrials.gov/ct2/show/record/NCT02436876

ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). Identifier NCT02128256, CERAMENT|G - Bone Healing and Re-infection Prophylaxis; 2014 May 1. Available from: https://clinicaltrials.gov/ct2/show/NCT02128256