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�� General orthopaedics

The application of machine learning to 
balance a total knee arthroplasty

Aims
The use of technology to assess balance and alignment during total knee surgery can pro-
vide an overload of numerical data to the surgeon. Meanwhile, this quantification holds 
the potential to clarify and guide the surgeon through the surgical decision process when 
selecting the appropriate bone recut or soft tissue adjustment when balancing a total knee. 
Therefore, this paper evaluates the potential of deploying supervised machine learning (ML) 
models to select a surgical correction based on patient-specific intra-operative assessments.

Methods
Based on a clinical series of 479 primary total knees and 1,305 associated surgical decisions, 
various ML models were developed. These models identified the indicated surgical decision 
based on available, intra-operative alignment, and tibiofemoral load data.

Results
With an associated area under the receiver-operator curve ranging between 0.75 and 0.98, 
the optimized ML models resulted in good to excellent predictions. The best performing 
model used a random forest approach while considering both alignment and intra-articular 
load readings.

Conclusion
The presented model has the potential to make experience available to surgeons adopting 
new technology, bringing expert opinion in their operating theatre, but also provides in-
sight in the surgical decision process. More specifically, these promising outcomes indicated 
the relevance of considering the overall limb alignment in the coronal and sagittal plane to 
identify the appropriate surgical decision.

Cite this article: Bone Joint Open 2020;1-6:236–244.
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Introduction
With the advance of technology in the field 
of joint arthroplasty surgery, quantifica-
tion is quickly becoming the new normal 
for both component alignment and soft-
tissue balancing. Various studies have 
shown a direct clinical benefit to the patient 
when using advanced technologies during 
surgery. Examples include a reduction in 
pain when using robotic technology to 
assist the implant component positioning in 
total knee arthroplasty (TKA)1 and improve-
ment of patient satisfaction when assuring a 
quantitatively balanced knee.2,3 However, an 
often-overlooked aspect of these technolo-
gies is the surgeons’ learning experience that 
accompanies adoption and implementation 
of new technology. As the introduction of 

new technology in the operating theatre 
often comes with an overload of numbers 
representing newly quantified metrics, it can 
take some time for the surgeon to under-
stand how to interpret the numbers and 
make subsequent intra-operative decisions. 
This early learning curve may therefore result 
in some early technical challenges resulting 
in outcomes such as extended surgical 
times.4-6 Though cadaver training labs have 
their value in lowering the entry barrier, they 
seldomly replicate pathology and deformity 
frequently encountered in the operating 
room in arthritic knees. The experience 
built by early adaptors of technology often 
gets lost or at best inadequately transferred 
when subsequent users adopt these new 
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technologies using the traditional mentor learning model 
prevalent in medicine.

With advances in data science and machine learning 
(ML) now demonstrating the ability to assist patient 
selection for joint arthroplasty surgery,7 the possibility 
arises of also using such techniques to bring expert deci-
sion making to the novice technology user. More specif-
ically, this paper aims to provide an ML framework that 
helps navigate a multi-dimensional space such as the 
one encountered when balancing the soft-tissue enve-
lope during TKA surgery. While balancing a total knee, 
the leg’s alignment, range of movement as well as soft-
tissue tensions need to be considered during the surgical 
decision-making. This creates a multi-dimensional 
problem as both soft tissue corrections and bone recuts 
can be considered as successful maneuvers to achieve a 
balanced knee. It is thus not always clear which surgical 
corrections should be performed, in what order and at 
what phase during surgery, presenting a classical classifi-
cation problem in the world of ML.

Whereas the skill of balancing a total knee has histori-
cally been mystified as it is built around expert opinion and 
surgeon feel,8,9 the introduction of intra-operative sensor 
technology has brought quantification to the knees’ state 
of balance.10,11 Given the multi-dimensional nature of such 
decisions as well as the variability in pathological condi-
tions encountered during surgery, traditional learning 
methods based on peer-to-peer knowledge transfer or 
learn-by-doing tend to be time-consuming and often 
lack the subtleties required to successfully identify and 
perform the need for less common releases. In contrast, 
ML, as part of the artificial intelligence domain, presents 
an opportunity to address such difficulties, particularly 
as it has proven to be effective in solving classification 
problems.12,13

Therefore, this paper will focus on building and vali-
dating ML algorithms classifying surgical corrections 
based on the encountered intra-operative sensor read-
ings when balancing a knee in combination with the 
readings from a surgical navigation system, thereby 
aiming to demonstrate the quantified decision process 
underlaying valuable and hard-earned expert opinion 
when using these technologies.

Methods
Clinical dataset.  All primary total knee surgeries per-
formed by a single surgeon using a mid-vastus arthroto-
my and posterior stabilized TKA design with a single radii 
femoral component between January 2017 and August 
2018 were included in this IRB approved study. This re-
sulted in 479 cases, during which surgical navigation 
(OrthoMap, Stryker, Kalamazoo, Michigan, USA) and 
smart tibial trial components (VERASENSE, OrthoSensor, 
Fort Lauderdale, Florida, USA) were used. Surgical nav-
igation was used to evaluate the initial pathological 

deformity and its correctability in the coronal and sagittal 
planes. Subsequently, the instantaneous alignment dur-
ing trialing was assessed also using surgical navigation 
as the surgeon attempted to correct the pathological de-
formity. The smart tibial components were used to meas-
ure the intra-articular tibiofemoral loads during trialing, 
with the patient in the supine position. During these load 
measurements, the surgeon assessed the knee’s neutral 
position, carefully avoiding adding any additional varus 
or valgus stress as well as compression/distraction force 
to the knee joint. The load data was captured at both 10° 
and 90° of flexion.

During the trialing phase, the loads in each compart-
ment and alignment in both planes were documented 
preceding every surgical correction leading ultimately to 
a balanced knee (as discussed in the next section).

Of the 479 consecutive knees, 21 knees had missing 
data. With an average of approximately three iterations 
to achieve a balanced knee per TKA, this led to 1,391 
recorded steps. Some steps had ill-documented load and 
alignment data feeding into the chosen surgical correc-
tion and were eliminated from the dataset. For 116 steps, 
more than one surgical correction was chosen. This 
resulted in 1,437 documented decisions representing a 
complex, real-world dataset that was used as input for 
the ML algorithms as detailed inbelow.

For the purpose of this paper, this clinical dataset was 
interpreted as a classification problem, during which 
a specific surgical decision was to be binarily indicated 
or not based on the load and alignment readings. As 
described in the previous paragraph, these decisions 
are not necessarily mutually exclusive since there were 
instances where the same load and alignment readings 
led to multiple, simultaneous decisions. Therefore, every 
surgical correction was so-called “one-hot encoded”, and 
a separate ML model was built for each surgical decision. 
In practice, this implies that a separate input dataset was 
built for every decision. This input dataset documented, 
for each set of load and alignment readings encountered, 
whether the surgical decision of interest was selected (1) 
or not selected (0), regardless of other decisions poten-
tially indicated by these readings. For each decision, this 
resulted in 1,305 unique cases in the input dataset. This is 
graphically represented by Figure 1.
Surgical corrections.  During total knee surgery, a strict 
mechanical alignment philosophy was adopted with a 
targeted neutral final coronal alignment. Analogous, 
the sagittal deformity as measured with the navigation 
system was targeted to be zero degrees of overall limb 
flexion (no flexion contracture or hyper extension). When 
balancing a total knee, the surgeon aimed for a medial 
and lateral tibiofemoral load in the range of 10 lbf to 40 
lbf per compartment at both 10° and 90°. In addition, 
the mediolateral load difference target was to not exceed 
15 lbf.3,11 During the iterative process leading to these 
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Fig. 1

Flowchart of surgical data collected leading to decision specific clinical dataset.

(ideal) target numbers for a balanced knee, the surgeon 
documented either of eight possible surgical corrections 
after evaluating the medial and lateral tibiofemoral loads 
at 10° and 90° of flexion, as well as the coronal and sag-
ittal alignments at that time. These surgical corrections 
involve:
�� Bone recuts:
–– Tibia recut: adding varus to the tibia. The exact 

amount of varus was beyond the scope of the current 
exercise as noted in the limitations of this paper.
–– Femur recut: proximalizing the femoral component 

by iterating on the distal femoral cut.
�� Soft tissue adjustments:
–– Pie-crusting of the medial collateral ligament (MCL): 

through the use of a 14 gauge needle, tight bands of 
the MCL were poked.14-16

–– Arcuate release: With the knee in extension the arcuate 
ligament, which is a thickening of the lateral capsule 
posterior the iliotibial band, is cut with curved Mayo 
scissors along the joint line in an anterior to posterior 
direction.
–– Popliteus release: With the knee in 90° of flexion the 

popliteus, a lateral stabilizing structure situated in 
the posterolateral corner, is tensioned with a lamina 
spreader positioned between the tibial plateau and 
posterior femur and the mid-substance of the tendon 
in cut with a scalpel
–– ITB release: With the knee in extension, the iliotibial 

band (ITB), which lies anterior to the arcuate liga-
ment, is cut with curved Mayo scissors along the joint 
line in an anterior to posterior direction.
–– Posterior capsule release: With the knee in 90° 

of flexion and tensioned with a lamina spreader 
between the femur and tibia, the posterior capsule 

is subperiosteally dissected off the posterior femur 
using electrocautery and subsequently further 
dissected proximally off the femur using a Cobb 
elevator.

�� Increase in poly insert thickness.
The above corrections were seen as the potential deci-
sions of the classification problem at hand. In addition, 
the decision to accept the current loads and alignments 
was also seen as a potential outcome (balanced, well-
aligned knee). This led to a finite set of nine surgical deci-
sions that could be selected based on readings from the 
navigation and sensor systems.
Machine learning.  Deploying ML for classification prob-
lems belongs to the domain of “supervised ML”; models 
are built with the primary aim to reproduce what humans 
(i.e. expert surgeons) have decided before. In reality, this 
often leads to a set of model parameters that are fit on 
a dataset with known model inputs and outputs, such 
that new model inputs can then be fed to the model and 
the model can make an accurate prediction as to which 
output is most appropriate. Therefore, the clinical dataset 
was split in three groups such that – in relative terms – a 
similar prevalence of each surgical decision was achieved 
in each group. A first group, consisting of 70% of the en-
tire dataset, was used as a training set. The second group 
consisting of an additional 15% of the data was used to 
tune the model’s hyperparameters, and the remaining 
15% of data was used for validation (Figure  1). By do-
ing so, overfitting of the model (hyper-)parameters was 
avoided.17 The results shown in this paper represent the 
values obtained when deploying the developed, tuned 
models in combination with the validation set.
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Table I. Overview of different feature sets considered for ML algorithms.

Feature 
Set

Medial load 
@ 10°

Lateral load 
@ 10°

Medial load 
@ 90°

Lateral load 
@ 90°

Varus/Valgus 
deformity pre-op

Max. Extension 
deformity pre-op

Varus/Valgus 
during 
trialing

Max. extension 
during trialing

FS1 √ √ √ √
FS2 √ √ √ √ √ √
FS3 √ √ √ √ √ √ √ √

The model’s input parameters represent the case-
specific load and alignment data that lead to a surgical 
decision; these are commonly referred to as the feature 
set. In this paper, three different feature sets are consid-
ered for the ML models (Table  I). The first feature set 
(FS1) is limited to four numbers representing the medial 
and lateral intra-articular loads at 10° and 90° of flexion, 
respectively. The second feature set (FS2) contains the 
previous numbers in addition to the coronal deformity in 
extension (varus/valgus) as well as the maximum (hyper)
extension during the trialing phase. The third feature 
set (FS3) uses all features in the second set as well as the 
pre-resection, pathological deformity in the coronal and 
sagittal plane, as recorded by the surgical navigation 
system before making any bone cuts.

The performance of the ML models described in 
the next paragraph is evaluated using the area under 
the receiver operator curve. This performance metric 
considers the specificity and sensitivity of the models and 
is often preferred over the model accuracy, also evaluated 
in this paper.

Within the scope of this paper, three different ML 
models have been implemented and trained for each 
surgical decision: a random forest (RF), a linear support 
vector machine (SVM) and an artificial neural network 
(ANN). A description of these models is provided in 
Supplementary Figure A1 (online supplementary figure 
1).

These ML models have been implemented using 
Python v.3.2 with the Tensorflow 2.0 and Keras package 
for the ANN and SciKitLearn for the random forest and 
linear support vector machines. When comparing 
different models and feature sets, non-parametric 
Kruskal-Wallis tests were used to compare model perfor-
mance characteristics such as the area under the receiver-
operator curve or the model accuracy.

Results
Target alignment and loads.  When reviewing the pre-
resection pathological deformity, a wide range of var-
us/valgus deformities were observed ranging between 
11° valgus to 19.5° varus. With the implants cemented 
in their final position, a narrower coronal deformity was 
seen from the surgical navigation readings, largely limit-
ed to ± 3° varus/valgus deformity (Figure 2a). Similarly, 
the pre-resection sagittal deformity ranged between 11° 

of hyperextension to 22° of flexion contracture. With the 
final implants cemented in place, a narrow range of ± 
2.5° was achieved (Figure 2b).

When looking at the final compartmental loads 
(Figure  2c&d), the average medial and lateral loads of 
32.5 lbf and 25.5 lbf, respectively, were achieved at 10° 
of flexion. At 90° of flexion, the average medial load was 
23.7 lbf and the average lateral load was 22.9 lbf.
Surgical decisions.  Not every surgical decision was equal-
ly prevalent in the clinical dataset, thus potentially limit-
ing the ability of the ML algorithms to learn from these 
past events and thus accurately predict future incidences. 
For all considered surgical decisions, this is schematically 
shown in Figure 3a. As expected, every case eventually 
ended in a decision to stop the balancing process (458 
observations). In contrast, popliteus and ITB releases as 
well as femur recuts were among the least prevalent de-
cisions taken during surgery to balance a knee with re-
spectively 19, 13, and 23 documented observations in 
the database.
Effect of ML model.  After tuning the algorithms’ hyper-
parameters, the algorithm performance on the validation 
set was evaluated using both the area under the receiver-
operator curve (AUC) and the prediction accuracy. 
Looking only at the model performance considering the 
full feature set, FS3, the resulting AUCs are summarized in 
Table II and Figure 3b. Overall, the random forest mod-
el performs superior to the support vector machine and 
artificial neural network for this set of features. The me-
dian AUC for the RF model was 0.89, while the SVM and 
ANN scored 0.82 and 0.83 respectively. This difference 
was strongly significant based on a Kruskal-Wallis test (p 
= 0.001 for ANN vs. RF and p < 0.001 for SVM vs. RF). 
Focusing on the individual surgical decisions, model per-
formance for decisions that are less prevalent in the clinical 
dataset (e.g. popliteus release, femoral recuts) is clearly 
more scattered and often inferior to the decisions that are 
more prevalent (e.g. arcuate release, MCL pie-crusting). 
In contrast, looking at the accuracy of the predictions, no 
significant differences were observed between the mod-
els. The accuracy was more closely linked to the number 
of events in the dataset; accuracies of 98% to 99% were 
observed for the clinical decisions that are less prevalent 
in the dataset such as the ITB release or popliteus release. 
Focusing on the ITB releases for instance, this is under-
stood since a naive algorithm that avoids recommending 
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Fig. 2

Kernel density approximation showing distribution of pre-resection alignment and alignment with the final implants cemented in place in the coronal (a) and 
sagittal (b) plane as well as the final medial and lateral loads at 10 (c) and 90 (d) degree of flexion.

this surgical decision (always false) predicts the decision 
process correctly for a large relative number of cases (13 
occurrences in 1,305 observations represents a success 
ratio of (1 - 13/1,305) x 100 = 99.00%) .

Effect of feature set
Using the random forest algorithm, the various feature 
sets are used to train the algorithm for each of the clin-
ical decisions. In general, the algorithm performance 
increases with adding the alignment parameters during 

trialing and adding pre-resection, pathological alignment 
conditions. More specifically, adding the intra-operative 
alignment parameters to the feature set (FS1 versus FS2) 
increased model performance in predicting the surgical 
corrections; the median AUC was 0.80 for FS1 and 0.89 
for FS2. This difference was statistically significant based 
on a Kruskal-Wallis test (p = 0.004). In contrast, adding 
the pre-resection alignment information (FS3) did not 
affect the model performance relative to the condition 
with the intra-operative alignment information (FS2). No 
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Fig. 3

Prevalence of surgical decisions for which ML model is built in clinical dataset (a) with performance of models expressed by area under the receiver-operator 
curve for each considered model using the full feature set (FS3) (b) and evaluation of selected feature set on performance of random forest algorithm (c) with 
dotted line representing an area under the curve of 0.5.
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Table II. Performance of machine learning algorithms developed using feature set FS3 expressed by area under the receiver-operator curve (above the line) 
and prediction accuracy (below the line).

Poly 
thickness MCL Arcuate Popliteus

Posterior 
capsule Tibia recut Femur recut ITB Stop

Support 
Vector 
Machine

0.86
---
0.82

0.91
---
0.85

0.95
---
0.96

0.62
---
0.98

0.72
---
0.97

0.62
---
0.98

0.59
---
0.98

0.82
---
0.99

0.87
---
0.79

Random 
Forest

0.90
---
0.85

0.91
---
0.85

0.98
---
0.96

0.73
---
0.98

0.72
---
0.97

0.79
---
0.98

0.69
---
0.98

0.95
---
0.99

0.89
---
0.81

Artificial 
Neural 
Network

0.87
---
0.85

0.90
---
0.85

0.94
---
0.95

0.70
---
0.98

0.71
---
0.97

0.45
---
0.98

0.46
---
0.98

0.64
---
0.99

0.85
---
0.76

Table III. Performance of Random Forest algorithms developed for various feature sets expressed by area under the receiver-operator curve (above the line) 
and prediction accuracy (below the line).

Poly  
thickness MCL Arcuate Popliteus

Posterior 
Capsule Tibia Recut Femur Recut ITB Stop

FS1 0.72
---
0.73

0.90
---
0.84

0.97
---
0.96

0.83
---
0.98

0.74
---
0.97

0.66
---
0.98

0.60
---
0.98

0.82
---
0.99

0.81
---
0.76

FS2 0.91
---
0.87

0.89
---
0.85

0.98
---
0.96

0.76
---
0.98

0.83
---
0.97

0.75
---
0.98

0.78
---
0.98

0.91
---
0.99

0.89
---
0.81

FS3 0.90
---
0.85

0.91
---
0.85

0.98
---
0.96

0.73
---
0.98

0.72
---
0.97

0.79
---
0.98

0.69
---
0.98

0.95
---
0.99

0.89
---
0.81

significant difference was seen between model perfor-
mance when considering FS2 versus FS3 (p = 0.758). This 
data is summarized in Table III and Figure 3c. With respect 
to the prediction accuracy, no significant differences were 
observed between the different feature sets.

Discussion
With the introduction of intra-operative sensor tech-
nology, the balance state of the soft tissues can now be 
quantitatively assessed during TKA. However, achieving 
a balanced knee is still challenging as it is a classic over-
determined problem; various strategies can be followed 
to achieve balance when guided by sensor technology. 
Based on an extensive clinical database from a single, 
expert user, this paper provides insight in the potential 
of using MLL algorithms to address various imbalance 
scenarios encountered during total knee surgery.

To evaluate various ML models, a number of perfor-
mance parameters can be considered. In this paper, 
the area under the receiver-operator curve and the 
predication accuracy were both evaluated. Whereas 
the former showed significant differences between the 
various models and feature sets, these differences were 
not withheld when looking at the prediction accuracy. 
More specifically, the latter tends to be unrepresentative 
of model performance and easily gives a false impres-
sion of the model’s ability to guide decisions when the 
occurrence of a given decision in the dataset is low. For a 
popliteus release, for instance, this is particularly relevant 

as the prevalence is limited to approx. 1% in the current 
clinical dataset. As such, a trivial model that never indi-
cates a popliteus release achieves a misleading predic-
tion accuracy of approximately 99%, not considering the 
model sensitivity and specificity.

Predictive models can be driven by a number of 
different mathematical models. In this paper, the random 
forest models performed superior compared to the 
implemented artificial neural networks and support 
vector machines. This is in line with a recent compara-
tive study, comparing various supervised models in the 
medical field.18 While describing the fundamental reasons 
of these differences for the given clinical dataset goes 
beyond the scope of this paper and often remains a black 
box, it is worth noting that exploring a variety of models 
should be considered when searching forML solution 
strategies.18 When selecting the optimum feature set in 
combination with this random forest model, the overall 
model performance – as expressed by the area under 
the receiver operator curve – ranges between 0.75 and 
0.98 for the various surgical corrections. Compared to 
other medical applications, it is concluded that these 
values represent acceptable to outstanding model 
predictions.19-21 In fact, a 100% prediction accuracy or 
area under the receiver operator curve might not even 
be achievable using supervised ML models, as this would 
suggest that surgical decisions are 100% consistent, 
something that can be challenged given the general vari-
ability seen in the surgeon’s decisions when templating 
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arthroplasty surgery.22 The outstanding predictions of 
the model presented in this paper indicate that these 
well-tuned and validated ML models can make the 
experience of an expert surgeon/panel accessible to the 
broader community. Whereas the introduction of new 
technology has inevitably been associated with a learning 
curve,5,6 deploying ML models can overcome the risk of 
data overload and the challenge of data interpretation for 
new users by providing case-specific guidance directly in 
the operating theatre. An idea introduced by the psychol-
ogist Ericsson and popularized by Malcolm Gladwell is 
that it takes an average of 10,000 hours of deliberate 
practice to master an activity. This has not been validated 
in knee arthroplasty and an argument can be made that 
there isn’t an achievable “mastery” when it comes to 
surgery on humans, but the introduction of ML models 
in a quantified environment, driven by data sources 
including, but not limited to sensors, robotics, naviga-
tion and imaging, clearly has the potential to reduce the 
time required to become proficient at the complex task 
of knee arthroplasty. Even more interesting and likely is 
that “automation” in the form of robotics and ML instead 
allows the rapid advancement of the complexity of deci-
sion making and judgement made by the user with the 
hopeful goal of creating treatments that are safer, more 
personalized and more effective. Another useful aspect of 
ML models is the potential ability to codify the complex 
decision making process gained over years of experience 
and making it accessible in the learning environment for 
both training and assessment of orthopaedic trainees.23-25

Examining the various surgical discussions, it is clear 
that model performance is linked to the number of cases 
available in the training set. This underlines the impor-
tance of sound clinical data collection as the fundamental 
basis for developing ML models. Within the current study, 
acceptable model performance was already observed for 
the less prevalent surgical decisions, though it is clear that 
excellent to outstanding model performance was primarily 
achieved for the decisions that occurred at least 50 times in 
the training and tuning phase.

Another critically important aspect of model perfor-
mance is the considered feature set. In our study, the rele-
vance of adding intraoperative alignment information 
(the limb alignment in both planes at each step resulting 
from previous surgical decisions) to the feature set in 
addition to the intra-articular load measurements cannot 
be underestimated. The area under the curve increased 
significantly when adding information on the sagittal and 
coronal alignment. This mirrors clinical practice, where 
the intra-articular loads cannot be seen as the sole driver 
of surgical decisions when balancing a total knee. This 
is particularly pronounced for predicting the increase 
in poly thickness and stopping condition in our study. 
The former is explained as an increase in poly thickness is 
often considered when the leg hyper-extends, something 

not necessarily captured when looking at the loads at 10 
(or 90) degrees of flexion. The latter relates to the fact 
that a perfectly balanced knee at 10° and 90° will still 
not be clinically acceptable if the knee hyper-extends or 
suffers from a residual flexion contracture. Meanwhile, it 
is interesting that the relevance of the pathological, pre-
resection alignment condition on the surgical decisions 
taken is limited. The surgical corrections are primarily 
driven by the assessments during the trialing phase. This 
might be different when looking at the initial implant 
planning, which is likely more directly driven by the pre-
resection alignment condition. It is therefore clear that 
alignment information – both prior to and following the 
initial bone resections – needs to be taken into account 
when striving for a balanced knee. Overall, these obser-
vations support the idea of quantifying various aspects of 
surgery to improve model performance and reliability of 
the predictions. This will thus present increasing oppor-
tunities as robotics and detailed 3D imaging become 
more widely adopted within the orthopaedic practice.26

It is worth noting that this study has a number of 
limitations. First, it is important to note that these models 
have been developed based on the expert opinion of a 
single surgeon, using a single implant design and align-
ment philosophy while also recognizing that soft tissue 
corrections can inherently be subjective. Deploying 
such models in the operating theatre of the novice user 
might require more diversified surgeon input to train the 
models in order to avoid bias, meanwhile providing the 
potential for peers to select the surgeon or surgeon group 
that most closely reflects their preferences, surgical tech-
nique or types of surgical corrections. Second, the use of 
even larger datasets could be recommended to improve 
model performance for those, more rarely observed 
clinical decisions while potentially also including other 
variables not considered in this study (e.g. component 
sizing). It is for that reason that, for instance, exact quan-
tification of the additional varus alignment considered 
during a tibial recut or the type and magnitude for a 
femoral recut could not be discussed and analyzed in 
this paper. Meanwhile, the current work has proven 
that even for a relatively limited number of (sometimes 
generalized) observations, and with the challenges that 
come with using a real-world data set (such as missing 
values and double decisions for a given set of sensor 
readings), an acceptable model can already be built if the 
correct features are chosen and the models are selected 
and tuned appropriately. A third limitation is that these 
sensors only assess the tibiofemoral joint during the 
trialing phase. As such they overlook the relevance of the 
patellofemoral joint to achieve a balanced knee and shall 
be seen as a tool to correct for tibiofemoral imbalance 
encountered following the initial bone resections. It is 
for that reason that mid-flexion readings have not been 
discussed in this paper since these are little actionable 
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(e.g. when pointing to mid-flexion instability as a result 
of an excessive joint line shift).27

Conclusion
In conclusion, this paper presents a validated ML algo-
rithm to guide the complex multi-dimensional classifica-
tion problem encountered when balancing a total knee 
and selecting a surgical correction for a given imbalance 
scenario. The presented model has the potential to make 
experience available to the (new) adopters of technology, 
bringing expert opinion in their operating theatre, but 
also provides insight in the surgical decision process. As 
such, the present study demonstrates the relevance of 
including alignment information when making surgical 
decisions and balancing a total knee. Furthermore, this 
paper demonstrates the relevance of using the area 
under the receiver operator curve as a sensitive and reli-
able characteristic when evaluating model performance, 
particularly when the prevalence of a predicted event in 
the clinical dataset is limited.

Supplementary material
‍ ‍Description of machine learning models imple-

mented and trained for each surgical decision: a 
random forest (RF), a linear support vector 

machine (SVM) and an artificial neural network (ANN).
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