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Article focus
�� What are the effects of lateralization of 

the centre of rotation (COR) and neck-
shaft angle (NSA) on shoulder range of 
movement (ROM) after reverse shoulder 
arthroplasty (RSA)?

�� Is shoulder ROM reduced in shoulders 
with greater critical shoulder angle (CSA)?

�� Can shoulder ROM be increased by later-
alization and higher NSA?

Key messages
�� CSA does not influence ROM after RSA.
�� Lateralization increases ROM in all 

configurations.

�� Increasing subacromial space is impor-
tant to grant sufficient rotation at 90° of 
abduction.

Strengths and limitations
�� This is the first study to evaluate the impact 

of acromial morphology on shoulder ROM.
�� We focused on glenohumeral movements 

only.

Introduction
The main goal of reverse shoulder arthro-
plasty (RSA) is to relieve pain, restore function, 
and grant mobility in degenerative and cuff-
deficient shoulders. Despite its success, RSA is 

Effect of critical shoulder angle, glenoid 
lateralization, and humeral inclination  
on range of movement in reverse 
shoulder arthroplasty

Objectives
To date, no study has considered the impact of acromial morphology on shoulder range 
of movement (ROM). The purpose of our study was to evaluate the effects of lateralization 
of the centre of rotation (COR) and neck-shaft angle (NSA) on shoulder ROM after reverse 
shoulder arthroplasty (RSA) in patients with different scapular morphologies.

Methods
3D computer models were constructed from CT scans of 12 patients with a critical shoulder 
angle (CSA) of 25°, 30°, 35°, and 40°. For each model, shoulder ROM was evaluated at a 
NSA of 135° and 145°, and lateralization of 0 mm, 5 mm, and 10 mm for seven standardized 
movements: glenohumeral abduction, adduction, forward flexion, extension, internal rota-
tion with the arm at 90° of abduction, as well as external rotation with the arm at 10° and 
90° of abduction.

Results
CSA did not seem to influence ROM in any of the models, but greater lateralization achieved 
greater ROM for all movements in all configurations. Internal and external rotation at 90° 
of abduction were impossible in most configurations, except in models with a CSA of 25°.

Conclusion
Postoperative ROM following RSA depends on multiple patient and surgical factors. This study, 
based on computer simulation, suggests that CSA has no influence on ROM after RSA, while 
lateralization increases ROM in all configurations. Furthermore, increasing subacromial space 
is important to grant sufficient rotation at 90° of abduction. In summary, increased lateraliza-
tion of the COR and increased subacromial space improve ROM in all CSA configurations.
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frequently associated with complications due to subopti-
mal implant positioning, which could limit the postopera-
tive range of movement (ROM).1-6 For these reasons, the 
glenoid component is often lateralized with bony or metal-
lic offsets in order to prevent impingement.6,7

The evolution of the upper limb in humans was 
marked by substantial morphologic alterations within the 
scapula, with progressive lateral extension of the acro-
mion,8 and greater dominance of the deltoid, strengthen-
ing its middle abductor component.9 Although the lateral 
extension of the acromion increases the moment arm of 
the deltoid muscle, it increases the likelihood of impinge-
ment (Fig. 1).

Several authors investigated the effects of humeral, 
glenoid, and scapular neck morphology on shoulder 
ROM10 and scapular notching3,4,11,12 after RSA, but none 
specifically considered the impact of acromial morphol-
ogy represented by the critical shoulder angle (CSA)13 or 
the acromial index (AI)14 (Fig. 2). Recent studies used 
computer simulations to determine the effects of humeral 
and glenoid variations on ROM and bony impingements 

after RSA,2 but none investigated how different configu-
rations of lateralization or neck-shaft angle (NSA) affect 
shoulder ROM in different scapular morphologies. The 
purpose of the present study, therefore, was to evaluate 
the effects of lateralization of the centre of rotation (COR) 
and NSA on shoulder ROM after RSA in patients with dif-
ferent scapular morphologies. The hypothesis was that 
shoulder ROM would be reduced in models with a greater 
CSA, and that it can be increased by lateralization and a 
higher NSA.

Patients and Methods
The authors constructed 3D computer models from CT 
scans (acquired at 0.63 mm slice thickness) of 12 patients 
scheduled to receive RSA. The 12 shoulders were selected 
to represent a wide range of CSAs (25°, 30°, 35°, and 
40°) with no bony deformity on the scapular or humeral 
sides, no fractural sequelae only type A1 glenoids accord-
ing to the classification of Walch et al,15 and inclination 
within the range described by Chalmers et al.16 All 
patients provided written informed consent for the use of 

40°

 

25°

	 Fig. 1a	 Fig. 1b	

Illustration of hypothesized abduction range of different shoulders: a) high critical shoulder angle (CSA) may limit abduction due to early impingement; b) low 
CSA may allow greater abduction before impingement.

CSA

 

GH

GA

AI =
GA

GH

	 Fig. 2a	 Fig. 2b	

Illustrations of a) critical shoulder angle (CSA), and b) acromial index (AI). GA, distance from the glenoid plane to the most lateral aspect of the acromion; GH, 
distance from the glenoid plane to the most lateral aspect of the proximal humeral head.
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their data and images for research and publishing pur-
poses. The CSA was measured on frontal views of the 
scapula and defined by the angle between the line con-
necting the superior and inferior poles of the glenoid and 
the line connecting the lateral edge of the acromion to 
the inferior pole of the glenoid (Fig. 2).13

Computer models and prosthetic scenarios.  The humerus 
and scapula were segmented to reconstruct bony 
surfaces using imaging software Mimics (Materialize 
NV, Leuven, Belgium) and were then imported into 
computer-aided design software SolidWorks (Dassault 
Systemes, Concord, Massachusetts) to simulate virtual 
RSA. The virtual implantations, carried out by engineers 
(including CC) using shoulder preoperative planning 
software,17 were performed under the supervision of 
one experienced shoulder surgeon (AL), who fine-tuned 
the choice of implant size and positioning. Scapular and 
humeral implants were modelled according to a stan-
dard shoulder system (Medacta International SA, Castel 
San Pietro, Switzerland).

A humeral cut was simulated at 135° at the anatomic 
humeral neck. An inlay stem (Shoulder System; Medacta 
International) was positioned in 20° of retroversion for 
each of the 12 scapular models. A reverse metaphysis + 0 
mm/0° was numerically assembled onto a standard 
humeral diaphysis. An asymmetric polyethylene liner was 
then positioned on the stem to obtain either a humeral 
inclination of 135° or 145° (Fig. 3).

The scapula was prepared in order to obtain neutral 
inclination and version. A circular baseplate was 

implanted at the inferior part of the glenoid surface in 
order to obtain an inferior overhang of 2 mm. A gleno-
sphere was then virtually implanted and three different 
lateralizations were tested (Fig. 4): a) neutral (0 mm); b) 
low offset (5 mm); and c) high offset (10 mm).
Kinematic simulation and impingement detection.  For 
each configuration, shoulder ROM was evaluated by 
simulating seven standardized movements: abduction; 
adduction; forward flexion; extension; internal rotation 
with the arm at 90° of abduction; external rotation with 
the arm at 10° of abduction; and external rotation with 
the arm at 90° of abduction. In order to permit move-
ment description in a repeatable way, bone coordinate 
systems were established for the scapula and humerus 

135°

 

145°

	 Fig. 3a	 Fig. 3b

The two neck-shaft angles evaluated: a) 135°; b) 145°.

0 mm

Fig. 4a

5 mm

Fig. 4b

10 mm

Fig. 4c

The three glenoid lateralizations evaluated: a) 0 mm; b) 5 mm; and c) 10 mm.
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based on anatomical landmarks and definitions of the 
International Society of Biomechanics.18 Simulation was 
performed with custom-made software that allowed test-
ing of the prosthetic shoulder models with real-time eval-
uation of impingement. Shoulder angles (three rotations) 
were applied at each timepoint by increments of 1° to 
the prosthetic model in its anatomical frame. A collision 
detection algorithm19 was then used to locate any pros-
thetic or bony impingement, as well as of the correspond-
ing angle of movement (Fig. 5). The algorithm consisted 
of first projecting each point of the scapular mesh (resolu-
tion: approximately 16 000 polygons) onto the humeral 
(resolution: approximately 16 000 polygons) and/or stem 
(resolution: approximately 36 000 polygons) mesh, and 
then of determining if the point was inside the humeral 
or stem mesh (i.e. colliding point). At each simulation 
timepoint, each colliding point of the scapular model 
onto the humeral and/or stem models was documented 
to determine impingement zones based on the follow-
ing reference system: zone 1, impingement between the 
polyethylene and anterior glenoid; zone 2, impingement 
between the polyethylene and the superior glenoid; 
zone 3, impingement between the polyethylene and the 
posterior glenoid; zone 4, polyethylene contact with the 
scapular pillar (inferior notching); zone 5, abutment with 
the acromion; and zone 6, abutment with the coracoid. 
All measurements were made by the same observer (CC).

Results
In all 3D models with a CSA of < 40°, maximum abduc-
tion was achieved with greater lateralization (10 mm) 
and a higher NSA (145°), while maximum adduction was 
achieved with greater lateralization (10 mm) but a lower 
NSA (135°; Fig. 6). Higher lateralization shifted impinge-
ment zones during abduction, from the superior glenoid 
to the acromion, but did not displace impingement zones 
in adduction away from the inferior glenoid (Table I).

In general, forward flexion, extension, and external 
rotation at 10° of abduction improved with greater later-
alization (Fig. 7). Internal and external rotation at 90° of 

abduction were impossible in most configurations, 
except in models with a CSA of 25°.

Discussion
Many studies report the influence of implant and surgical 
factors on the ROM of the shoulder after RSA.2,20-23 
Improvements in surgical techniques and implant 
design have led to better postoperative outcomes.21,24-27 
However, there is a high variability of postoperative 
shoulder ROM reported in the literature,28,29 which sug-
gests the influence of other unidentified factors. To the 
authors’ knowledge, no published studies have investi-
gated how different configurations of lateralization and 
NSA affect shoulder ROM in different scapular morpholo-
gies. In the present study, based on computer simula-
tions, we aimed to identify the effects of lateralization and 
NSA on shoulder ROM after RSA in patients with different 
scapular morphologies. Our main finding was that, con-
trary to our hypothesis, CSA does not seem to influence 
ROM after RSA, while lateralization increases ROM in all 
configurations.
CSA. O ur results did not confirm our hypothesis that 
increasing the CSA reduces ROM. On the contrary, the 
greatest degrees of abduction were observed in a model 
with a CSA of 40°. We, however, found that impingement 
occurred mainly in the acromion zone, independently of 
the CSA.
Lateralization.  We found that lateralization improved 
the ROM in all directions, independently of the CSA 
and NSA, except in models with a CSA of 40°. This find-
ing is consistent with two earlier studies of RSA, based 
on sawbones21 and computer models,20 which found 
that lateralization increased ROM during abduction and 
adduction. Recently, Werner et al,23 who conducted a 
computer-simulated study on 20 patients, found that 
lateralization led to a significant increase in adduction, 
forward flexion, and extension, but not abduction. In line 
with our findings, they observed that, during abduction, 
lateralization led to impingement at the acromion rather 
than the superior glenoid zone. In fact, Gutiérrez et al30 

Fig. 5a   Fig. 5b   Fig. 5c

Type of impingements: a) abutment between the greater tuberosity and the acromion at maximal abduction; b) polyethylene contact with the scapular pil-
lar (inferior notching) occurring at internal rotation; and c) impingement between the polyethylene and the posterior glenoid during external rotation with 
abduction.
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Fig. 6

Bar charts comparing median abduction and adduction ranges for different critical shoulder angle (CSA) models. NSA, neck-shaft angle.

had also suggested that decreased articular constraint in 
RSA, hence increased lateral offset of the humeral compo-
nent, may be associated with decreased ROM because of 
impingement on the acromion at small abduction angles.
Humeral neck-shaft angle.  We found that a higher NSA 
increased the range of abduction and decreased the range 
of adduction, independently of the CSA and lateralization. 
This corroborates with earlier studies that also found that a 
higher NSA increases abduction.2,20,22,23 By contrast, Roche 
et al,31 in their computational analysis of a Grammont-style 
implant, found no correlation between NSA and ROM, 

although they found that decreasing NSA by 5° lowered 
the inferior and superior impingement points.
Subacromial space.  Internal rotation in abduction is 
important to activities of daily living. Interestingly, inter-
nal and external rotation at 90° of abduction were impos-
sible in most configurations due to inexistent subacromial 
space. We suggest that, in these configurations, eccentric 
positioning of the glenosphere could create subacromial 
space.2

The limitations of this study are typical of computer-
based simulations. First, we focused on glenohumeral 
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Radar charts illustrating median range of movement (ROM) at different degrees of lateralization for different critical shoulder angle (CSA) models. NSA, neck-
shaft angle; ER, external rotation; IR, internal rotation; ABD, abduction.
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movements and could not consider scapulothoracic 
movements. Second, in an anatomic shoulder, soft-tissue 
tensions may alter the actual ROM achieved. Third, real 
movements can involve compensatory movements, such 
as internal or external rotation of the humerus during 
abduction, to avoid early impingement and achieve 
greater degrees of abduction than those reported in this 
study. Fourth, we evaluated the effects of lateralization of 
the COR by increasing glenoid component offset, but not 
by increasing humeral component offset, which also 
plays an important part in shoulder ROM.2

In conclusion, postoperative ROM following RSA 
depends on multiple patient and surgical factors. This 
study, based on computer simulations, suggests that 
CSA does not influence ROM after RSA, while lateraliza-
tion increases ROM in all configurations. Furthermore, 
increasing subacromial space is important in order to 
grant sufficient rotation at 90° of abduction.
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