Supplementary material

Table i. Papers included in qualitative synthesis – studies using cancellous bone specimens; articles are ordered according to method of strain measurement and secondly according to author (alphabetical order); where "Not reported in paper" is written, no information has been provided regarding that subject

Author (year)	Title	Bone type/ origin	Machine setup	Strain measurement method	Sample dimensions	Sample preparation / storage	Compliance correction	Surface / boundary conditions	Strain or displacement rate / D/ND test	Preload / preconditioning
Augat et al ¹ (1998)	Anisotropy of the elastic modulus of trabecular bone specimens from different anatomical locations	Cancellous femur, vertebras, calcaneus	Servohydraulic (MTS), 500 N load cell	Extensometer (MTS)	Cubic 12 mm	Defatted in ethanol and water irrigation, stored in saline at 4°C	Not reported in paper	Not reported in paper	0.05%/s between 5 N and 0.4% strain D+ ND	5 N preload, 5 cycles between 0.01% and 0.1% strain
Banse et al ² (2002)	Mechanical properties of adult vertebral cancellous bone: Correlation with collagen intermolecular cross-links	Cancellous vertebras	Screwdriven machine (Zwick), 2 kN load cell, test at RT	Extensometer (Zwick)	Cylinder 8.2 mm diameter, varied height (19 mm to 29 mm)	Frozen	Not reported in paper	Brass endcaps	Up to 2% strain D	Not reported in paper
Burgers et al ³ (2008)	Compressive properties of trabecular bone in the distal femur	Cancellous femur	Universal testing machine (Enduratec), 12.5 kN load cell (Enduratec)	Extensometer (Epsilon)	Cylinder 8.1 mm diameter, 35 mm height	Frozen airtight in saline at -20°C, thawed at RT	Not reported in paper	Stainless-steel endcaps with adhesive	0.005/s D	Not reported in paper
Cendre et al ⁴ (1999)	High-resolution computed tomography for architectural characterization of human lumbar cancellous bone: relationships with histomorphometry and biomechanics	Cancellous vertebras	Screwdriven machine (Schenck), 5 kN load cell, tested in saline bath	Immersed extensometer	Cubic 9 mm	Frozen at -20°C	Not reported in paper	Not reported in paper	0.5 mm/min D	10 cycles
Ding et al⁵ (2001)	Bone density does not reflect mechanical properties in early-stage arthrosis	Cancellous tibia	Hydraulic machine (MTS), 1 kN load cell	Extensometer (MTS)	Cylinder 7.5 mm diameter, 7.5 mm height	Frozen at -20°C	Not reported in paper	Not reported in paper	0.002/s D	Not reported in paper
Ducheyne et al ⁶ (1977)	The mechanical behaviour of intracondylar cancellous bone of the femur at different loading rates	Cancellous femur	Test machine (Instron), hydraulic device for high loading rate with steel ring	Extensometer	Cylinder 5 mm diameter, 8 mm height	Frozen at -35°C	Not reported in paper	Not reported in paper	0.1 cm/min and 5 cm/ min (Instron), 440 cm/min (hydraulic)	Not reported in paper
Frich et al ⁷ (1997)	Bone strength and material properties of the glenoid	Cancellous glenoid	Materials testing machine (Instron), 1 kN load cell	Extensometer	Cylinder 6.5 mm diameter, 7.5 mm height	Not reported in paper	Not reported in paper	Not reported in paper	0.01/s ND up to 0.6% strain	Preload of 2N, 8 non-destructive cycles
Giesen et al ⁸ (2003)	Reduced mechanical load decreases the density, stiffness, and strength of cancellous bone of the mandibular condyle	Cancellous mandible	Materials testing machine (MTS), 1 kN load cell, steel loading rods	Extensometer (MTS)	Cylinder 3.6 mm diameter, 4.9 mm height	Stored in embalming fluid for 5 mths	Not reported in paper	Low viscosity mineral oil as lubricant	0.2%/s D up to 3% strain	Yes, protocol unclear
Haddock et al ⁹ (2004)	Similarity in the fatigue behavior of trabecular bone across site and species	Cancellous vertebras	Servohydraulic load frame (MTS), 1 KN load cell, wrapped in wet gauze and cellophane during testing, test at RT	Extensometer (12mm)	Cylinder 8.3 mm diameter, 25 mm to 40 mm height	Frozen	Not reported in paper	Brass end caps with PMMA	Multicyclic: 10 cycles 1500 µstrain at 1500 µstrains/s D	Not reported in paper
Hans et al ¹⁰ (1999)	Ultrasound velocity of trabecular cubes reflects mainly bone density and elasticity	Cancellous vertebras	Servohydraulic machine (MTS), 500 N load cell	Extensometer (MTS)	Cubic 12 mm	Marrow removed, degassed for several hours, stored in 1.5 mM Gd-DTPA doped physiological saline	Not reported in paper	Not reported in paper	0.05%/s ND up to 0.4% strain	5N preload, 5 cycles

Freely available online OPEN OACCESS

Author (year)	Title	Bone type/ origin	Machine setup	Strain measurement method	Sample dimensions	Sample preparation / storage	Compliance correction	Surface / boundary conditions	Strain or displacement rate / D/ND test	Preload / preconditioning
Hernandez et al ¹¹ (2014)	Quantitative relationships between microdamage and cancellous bone strength and stiffness	Cancellous vertebras	Servohydraulic machine (MTS), 1 kN load cell	Extensometer (25 mm, MTS)	Cylinder 8.2 mm diameter, 26.2 mm height	Marrow removed using water jet, stained with alizarin complexone in saline for 2 hrs, rinsed for 10 mins with deionized water, frozen in saline at -20°C, stored at 4°C, thawed at RT	Not reported in paper	Brass endcaps with cyanoacryl- ate glue	0.5%/s up to varied strains, then unload at 0.05% strain/s Stained with calcein and reloaded to 4% strain D	10 cycles up to 0.2% strain
Hvid et al ¹² (1989)	X-ray quantitative computed tomography: the relations to physical properties of proximal tibial trabecular bone specimens	Cancellous tibia	Universal testing machine (Instron), 1 kN load cell	Extensometer	Cylinder 7.5 mm diameter, 7.5 mm height	Frozen at -21°C	Not reported in paper	Not reported in paper	0.01/s D+ ND	ND: 7 to 15 cycles until steady state between 5 N and 0.6% strain
Jensen et al ^{1:} (1988)	³ Strength pattern of cancellous bone at the ankle joint	Cancellous tibia, talus	Materials testing machine (Instron)	Extensometer	Cylinder 7.5 mm diameter, 6 mm height	Frozen at -25°C, moistened with Ringer's solution before testing	Not reported in paper	Moistened steel columns with Ringer's solution	5 mm/min D	Not reported in paper
Jensen et al ¹ (1991)	⁴ Topographical distribution of trabecular bone strength in the human os calcanei	Cancellous calcaneus	Universal testing machine (Instron)	Extensometer	Cylinder 6.5 mm diameter, 6.5 mm height	Frozen at -25°C, moistened with Ringer's solution	Not reported in paper	Not reported in paper	0.01/s D	Up to 0.45% strain at 0.01/s and 0.2Hz (10 cycles) Preload 2.5 N
Karim and Vashishth ¹⁵ (2012)	Heterogeneous glycation of cancellous bone and its association with bone quality and fragility	Cancellous tibia	Materials testing machine (MTS), tested at 37°C in physiological saline	Extensometer (MTS)	Cylinder 7.5 mm diameter, 10.5 mm height	Frozen in saline at -80°C	Not reported in paper	Not reported in paper	Not reported in paper D	Not reported in paper
Keaveny et al ¹⁶ (1997)	Systematic and random errors in compression testing of trabecular bone	Cancellous vertebras	Not reported in paper	Extensometer (1 inch)	Cylinder 8mm diameter, 32mm height	Frozen -20°C	Not reported in paper	Group 1. Brass endcaps with glue Group 2. no endcaps, polished platen	0.005 s ⁻¹ , endcap: ND test 10 cycles from 0 to 0.3% strain non-endcap: D test to 3% strain	5N to 10N preload 10 cycles of 0% to 0.8% strain
Keaveny et al ¹⁷ (1999)	Mechanical behavior of human trabecular bone after overloading	Cancellous vertebras	Not reported in paper	Extensometer (1 inch)	Cylinder 8.3 mm diameter, 20 mm to 30 mm height	Frozen	Not reported in paper	Brass endcaps	To 0.3% or 4% strain, at 0.5% strain/s, unload at 200 N/s to zero and reload at 0.5%/s to 4% strain	Not reported in paper
Kopperdahl and Keaveny ¹⁸ (1998)	Yield strain behavior of trabecular bone	Cancellous vertebras	Servohydraulic machine (MTS)	Extensometer (25 mm, MTS)	Cylinder 8 mm diameter, 25 mm height	Frozen	Not reported in paper	Brass end caps with glue	0.5% D up to 3% strain	5 cycles up to \pm 0.1% strain
Linde and Hvid ¹⁹ (1987)	Stiffness behaviour of trabecular bone specimens	Cancellous tibia	Universal testing machine (Instron), tested at RT	Extensometer	Cylinder 7.5 mm diameter, 7 mm height	Frozen at -20°C, thawed in saline	Not reported in paper	Not reported in paper	0.01/s, first up to 50%, then repeated for reproducibility after 3 hrs, then D test	Preload 2N

BONE & JOINT RESEARCH

Author (year)	Title	Bone type/ origin	Machine setup	Strain measurement method	Sample dimensions	Sample preparation / storage	Compliance correction	Surface / boundary conditions	Strain or displacement rate / D/ND test	Preload / preconditioning
Linde and Sørensen ²⁰ (1993)	The effect of different storage methods on the mechanical properties of trabecular bone	Cancellous tibia	Universal testing machine (Instron), 1 kN load cell	Extensometer	Cylinder 6.5 mm diameter, 6.5 mm height	Group 1: stored in 70% ethanol at 10°C for 100 days, Group 2: frozen at -20°C for 1 or 100 days then thawed in physiological saline at RT for 3 hrs, all defatted by jet air and 90% ethanol for 24 hrs	Not reported in paper	PMMA on ends, 2nd group: low viscous oil on ends, 3rd group: constrained in oiled cylinder	0.01/s, 5 cycles, between 5 N and 0.45% strain ND	Yes
Linde et al ²¹ (1992)	The effect of specimen geometry on the mechanical behaviour of trabecular bone specimens	Cancellous tibia	Testing machine (Instron), 1 kN load cell	Extensometer	Cylinder 6.5mm diameter and height Cubic 5.8mm	Frozen at -20°C, thawed in saline at RT for 2 hrs, stored in saline at 10°C between tests	Discussed but unclear whether corrected	Mineral oil for lubricant	0.01/s ND up to 0.4% strain	Preload 0.12 MPa cycles up to 0.4% strain until steady state
Linde et al ²² (1991)	Mechanical properties of trabecular bone. Dependency on strain rate	Cancellous / tibia	Screwdriven and servohydraulic machine (Instron), second load cell 1 kN	Dynamic extensometer (Instron)	Cylinder 5.5 mm diameter, 8.25 mm height	Frozen, thawed at RT for 2 hrs in saline	Not reported in paper	Lubricant oil and metal disc	Varied strain rates in range 0.0001/s to 10/s D	Not reported in paper
Majumdar et al ²³ (1998)	High-resolution magnetic resonance imaging: Three- dimensional trabecular bone architecture and biomechanical properties	Cancellous calcaneus, femur, vertebras	Servohydraulic machine (MTS), low capacity load cell (MTS)	Extensometer (MTS)	Cubic 12 mm	Defatted chemically, Stored in saline at 4°C	Not reported in paper	Not reported in paper	0.01%/s between 5N and up to 0.4% strain (3 cycles) D + ND	5 cycles up to 5 N
Majumdar et al ²⁴ (1999)	Fractal analysis of radiographs: Assessment of trabecular bone structure and prediction of elastic modulus and strength	Cancellous femur, I vertebras	Materials testing machine (MTS), low capacity load cell	Extensometer	Cubic 12 mm	Defatted chemically, stored in saline at 4°C	Not reported in paper	Not reported in paper	0.01% strain ND between 5 N and 0.4% strain	5 cycles up to 5 N
Martens et al ²⁵ (1983)	The mechanical characteristics of cancellous bone at the upper femoral region	Cancellous femur	Hydraulic machine, load cell	Extensometer	Cylinder 8 mm diameter, height not reported in paper	Machined under liquid nitrogen, frozen at -20°C	Not reported in paper	Not reported in paper	7/s up to 15% deformation	Not reported in paper
Matsuura et al ²⁶ (2008)	The role of fabric in the quasi-static compressive mechanical properties of human trabecular bone from various anatomical locations	Cancellous vertebras, femur, calcaneus, radius	Servohydraulic machine (MTS), load cell 1.5 kN	Extensometer (10mm)	Cylinder 8 mm diameter, 12 mm height	Marrow removed in soap water at 40°C for 24 hrs, ther in water/chloride solution, ultrasonic cleansing for 6 mins, rinsed with tap water, frozen at -18°C	Not reported in paper	Not reported in paper	0.005 mm/s up to 6% strain	12 cycles to 0.35% of strain
Morgan and Keveany ²⁷ (2001)	Dependence of yield strain of human trabecular bone on anatomic site	Cancellous vertebras	Servohydraulic machine (MTS)	Extensometer (25 mm, MTS) to endcaps and to specimen (5 mm, MTS)	Cylinder 8 mm diameter, average 5:2 ratio (height to diameter)	Hydrated frozen e airtight at -20°C	Not reported in paper	Endcaps	0.5%/s ND	10 cycles to 0.3% strain
Morgan et al ²⁸ (2001)	Nonlinear behavior of trabecular bone at small strains	Cancellous tibia, femur	Materials testing machine (MTS), test at RT	Extensometer (25 mm)	Cylinder 8mm diameter, 22mm to 38mm height	Frozen airtight at -20°C	Not reported in paper	Endcaps	0.5%/s strain rate D	3 cycles to 0.1% strain

Author (year)	Title	Bone type/ origin	Machine setup	Strain measurement method	Sample dimensions	Sample preparation / storage	Compliance correction	Surface / boundary conditions	Strain or displacement rate / D/ND test	Preload / preconditioning
Morgan et al ²⁹ (2005)	Damage in trabecular bone at small strains	t Cancellous vertebras	Servohydraulic machine (MTS), 250 lb load cell, tested at RT	Extensometer (25 mm, MTS)	Cylinder 8 mm diameter, height not reported in paper	Frozen airtight at -20°C in wet paper towels	Not reported in paper	Endcaps	0.5%/s Multicyclic load to max. strain, unload to zero stress at 100N/s	2 cycles to 0.1% strain
O'Mahony et al ³⁰ (2000)	Anisotropic elastic properties of cancellous bone from a human edentulous mandible	Cancellous mandible	Testing machine (MTS), 1250N load cell	Extensometer (5 mm)	Parallelepiped Average 4.4 mm × 4.4 mm × 4.8 mm	Frozen in physiological saline	Not reported in paper	Teflon tape on ends, spherical bearing platen	0.002/s up to 0.5% strain	Preload of 2N, 6 to 20 conditioning cycles
Odgaard and Linde ³¹ (1989)	Compressive axial strain distributions in cancellous bone specimens	Cancellous tibia	Testing machine (Instron)	Extensometer	Cylinder 5.0 mm diameter, 7.5 mm height	Frozen at -20°C	Not reported in paper	Mineral oil on ends	0.00015/s D +ND	0.5 N or 5 N or 10 N
Odgaard et al ³² (1991)	The underestimation of Young's modulus in compressive testing of cancellous bone specimens.	Cancellous tibia	Materials testing machine (Instron)	Extensometer, optical device (Phillips)	Parallelepiped 7 mm \times 6 mm \times 6 mm	Frozen at -18°C	Not reported in paper	Not reported in paper	0.025 mm/min ND test up to 0.8% strain	Preload 3 N Cyclic preconditioning
Öhman et al ³³ (2007)	Mechanical testing of cancellous bone from the femoral head: experimental errors due to off-axis measurements	Cancellous femur	Testing machine (Instron)	Extensometer (Instron)	Cylinder 10mm diameter, 26mm height	Stored in Ringer's solution for 1 hr at RT and 70% ethanol for at least 4 wks	Not reported in paper	Specimen cemented onto machine	0.01/s D	Not reported in paper
Ojanen et al ³⁴ (2017)	Tissue viscoelasticity is related to tissue composition but may not fully predict the apparent-level viscoelasticity in human trabecular bone – An experimental and finite element study	l Cancellous femur	Bi-axial servohydraulic testing device (Instron), 1 kN load cell	Extensometer (Instron)	Cylinder 10mm diameter, 6.5mm height	Not reported in paper	No	No	0.01s ⁻¹ ND to 0.6% strain, held for 10min, then cyclic loading	9N preload
Ouyang et al ³⁵ (1997)	Biomechanical characteristics of human trabecular bone	Cancellous vertebras	Materials testing machine (Instron)	Extensometer	Parallelepiped 10 mm × 10 mm × 24 mm	Frozen at -20°C, thawed in Ringer's solution for at least 2 hrs at RT	Not reported in paper	Not reported in paper	Varied strain rates in range of 1.0×10^{-5} /s to 5.0×10^{-4} /s to 0.4% strain (ND) or up to 1.0×10^{-3} /s (D)	Preload 2N
Ouyang et al ³⁶ (1997)	Biomechanical strength versus spinal trabecular bone structure assessed using contact radiography and texture analysis	Cancellous vertebras	Servohydraulic machine (MTS), low capacity load cell (MTS)	Extensometer (MTS)	Cubic 12 mm	Not reported in paper	Not reported in paper	Not reported in paper	0.01%/s ND up to 0.4% strain for 3 cycles, YM from last 2 cycles	5 cycles, strain rate 0.01%/s up to 5 N preload
Ouyang et al ³⁷ (1998)	Morphometric texture analysis of spinal trabecular bone structure assessed using orthogonal radiographic projections	Cancellous vertebras	Servohydraulic machine (MTS), low capacity load cell (MTS)	Extensometer on platens	Cubic 12 mm	Not reported in paper	Not reported in paper	Not reported in paper	0.01%/s ND up to 0.4% strain for 3 cycles, YM from last 2 cycles	5 cycles, strain rate 0.01%/s up to 5 N preload
Perilli et al ³⁸ (2008)	Dependence of mechanical compressive strength on local variations in microarchitecture in cancellous bone of proximal human femur	Cancellous femur	Testing machine (Instron)	Extensometer (8.6 mm, Instron)	Cylinder 10mm diameter, 26mm height	Fixed in 70% ethanol before machining, then stored in Ringer's solution for 25 hrs	Not reported in paper	Endcaps	0.01/s D	Not reported in paper

Author (year)	Title	Bone type/ origin	Machine setup	Strain measurement method	Sample dimensions	Sample preparation / storage	Compliance correction	Surface / boundary conditions	Strain or displacement rate / D/ND test	Preload / preconditioning
Rapillard et al ³⁹ (2006)	Compressive fatigue behavior of human vertebral trabecular bone	r Cancellous r vertebras	Servohydraulic machine (MTS), 2.5 kN load cell, HBSS around sample, cellophane membrane to prevent evaporation, 37°C water bath	Extensometer	Cylinder 8 mm diameter, 10 mm height	Marrow removed	Yes; compliance of PMMA layers, no correction for aluminium rod	3 mm thick PMMA layer on both ends (1.5 mm, embedded)	2Hz sinusoidal stress control, 16% to 55% or 90% ultimate stress	Not reported in paper
Schwiedrzik et al ⁴⁰ (2016)	Experimental validation of a nonlinear µFE model based on cohesive-frictional plasticity for trabecular bone	Cancellous femur, radius, vertebras	Servohydraulic machine (MTS)	Extensometer (MTS) mounted on steel rods	Cylinder 8 mm diameter, 10 mm height	Marrow removed using pulsed water jet, dried at RT for 1 hr, rehydrated for 2hrs in 0.9% saline	Not reported in paper	Glued specimens to polished rods	0.05%/s D	Not reported in paper
Schwiedrzik et al ⁴¹ (2011)	Fabric-mechanical property relationships of trabecular bone allografts are altered by supercritical CO ₂ treatment and gamma sterilization	Cancellous femur	Servohydraulic machine (MTS)	Extensometer (15 mm, MTS)	Cylinder 8 mm diameter, 12 mm height	Sterilized with 31 kGy irradiation at RT, dried for several hours, rehydrated in saline for 1 hr before testing, stored in plastic bags at RT	Not reported in paper	Epoxy glue, custom alignment device	15 µm/s Unconfined: to 1.7 mm displacement, Confined: to 8 mm displacement	5 cycles of -50μm at 15μm/s
Stauber M. et al ⁴² (2006)	Importance of individual rods and plates in the assessment of bone quality and their contribution to bone stiffness	Cancellous vertebras	Not reported in paper	Extensometer (9.3 mm)	Cylinder 8 mm diameter, 10 mm height	Not reported in paper	Not reported in paper	Embedded in PMMA cement	0.05%/s Not reported in paper	5 cycles
Stoppie et al ⁴³ (2007)	The validation of a compression testing method for cancellous human jawbone by high-resolution finite element modeling	Cancellous femur, mandible	Mechanical testing machine (Instron), load cell 1 kN	Series 1: no extensometer; series 2 + 3 + mandible: extensometer	Cylinders series 1 + 2: 6.1 mm diameter, 13 mm height; series 3: 5.5 mm diameter, 8 mm height; mandible: 5.7 mm diameter, 8 mm height	Mandible: embalmed tissue, frozen in saline at -20°C, thawed at RT Femur: fresh tissue, frozen at -20°C, thawed at RT	Not reported in paper	Spherical-seated bearing on lower platen; series 2 + 3 + mandible: brass endcaps with glue	5 mm/min D	Series 2 + 3 + mandible: preload 3N, 10-15 cycles up to 0.6% strain or 3N at 0.2 mm/ min
Tang et al ⁴⁴ (2007)	Effects of non-enzymatic glycation on cancellous bone fragility	Cancellous femur	Servohydraulic testing machine (MTS), tested in constant saline flow at 37°C	Extensometer	Cylinder 8 mm diameter, 8 mm to 10 mm height	Stored in zwitterionic buffers, protease inhibitors, HBSS for 7 days, pH maintained as 7.3 to 7.6	Not reported in paper	Brass endcaps with glue	883 µstrains/s D	Not reported in paper
Van Lenthe et al ⁴⁵ (2006)	Specimen-specific beam models for fast and accurate prediction of human trabecular bone mechanical properties	Cancellous vertebras	Not reported in paper	Extensometer (9.3 mm)	Cylinder 8mm diameter, 10mm height	Not reported in paper	Not reported in paper	Embedded in PMMA	0.05%/s Not reported in paper	5 cycles preconditioning
Wachter et al ⁴⁶ (2001)	Predictive value of bone mineral density and morphology determined by peripheral quantitative computed tomography for cancellous bone strength of the proximal femur	Cancellous femur	Materials testing machine (Zwick), tested at RT	Extensometer (Zwick)	Cylinder 10.6 mm diameter, 5.35 mm to 13.7 mm height	Frozen at -20°C	Not reported in paper	Lubrication on specimen ends	0.6 mm/min up to 250N D	3 cycles at 0.6 mm/min up to 20 N

Author (year)	Title	Bone type/ origin	Machine setup	Strain measurement method	Sample dimensions	Sample preparation / storage	Compliance correction	Surface / boundary conditions	Strain or displacement rate / D/ND test	Preload / preconditioning
Wu et al ⁴⁷ (2013)	In vivo microdamage is an indicator of susceptibility to initiation and propagation of microdamage in human femoral trabecular bone	Cancellous femur	Biaxial load frame (Instron), tested at RT	Biaxial extensometer (Epsilon)	Cylinder 8mm diameter, height not reported in paper	Frozen at -20°C in buffered saline	Not reported in paper	Brass endcaps	Not reported in paper up to 2% strain	Not reported in paper
Aiyangar et al ⁴⁸ (2014)	Dependence of anisotropy of human lumbar vertebral trabecular bone on quantitative computed tomography-based apparent density	Cancellous vertebras	Bone Loading and Bioreactor System (Physik Instrumente), load cell (Kistler), test at RT	Strain gauges	Cylinder 10mm diameter, 5mm height	Refrigerated in sterile saline	Yes	Cylindrical bone chambers (constraine-d)	Not reported in paper D	Preload of 10N or 20N, then 5 cycles up to 10µm strain
Brown et al ⁴⁹ (1981)	⁹ Mechanical characteristics of bone in femoral capital aseptic necrosis	Cancellous femur	Load cell (Instron)	Strain gauge extensometer	Cubic 5 mm	Frozen at -10°C	5.29% stiffening artefact corrected	Not reported in paper	0.004/s D	Not reported in paper
Ding et al ⁵⁰ (1997)	Age variations in the properties of human tibial trabecular bone	Cancellous tibia	Materials testing machine (Instron), 1 kN load cell	Static strain-gauge extensometer (Instron)	Cylinder 7.5 mm diameter, 7.5 mm height	Frozen in saline -20°C, thawed for 2 hrs in saline at RT	Not reported in paper	Mineral oil on specimen ends	0.002/s ND	10 cycles between preload of 3 N and 0.006 strain
Giesen et al ⁵¹ (2001)	Mechanical properties of cancellous bone in the human mandibular condyle are anisotropic	Cancellous mandible	Materials testing machine (MTS), 1 kN load cell	Strain gauge extensometer (MTS)	Cylinder 4 mm diameter, 5 mm height	Stored in embalming fluid	Not reported in paper	Low viscosity mineral oil as lubricant	0.2%/s D up to 3% strain	5 cycles between 3 N and 0.6% strain
Linde and Hvid ⁵² (1989)	The effect of constraint on the mechanical behaviour of trabecular bone specimens	Cancellous tibia	10 kN Universal screwdriven test machine (Instron), 1 kN load cell	Static strain gauge extensometer	Cylinder 7.5 mm diameter, 7.5 mm height	Frozen at -20°C	Not reported in paper	Group 1: no constraint; group 2: cement layer; group 3: excess cement removed; group 4: cement loosened	0.01/s ND cyclic test between 5 N and 0.8% strain	Preload 5N
Rohl et al⁵³ (1991)	Tensile and compressive properties of cancellous bone	Cancellous tibia	Screwdriven machine (Instron), 10kN load cell, wedge specimen grips	Dynamic strain gauge extensometer	Parallelepiped 9 mm × 9 mm × 20 mm	Marrow removed with air jet, embedded between 2cm of epoxy resin layers, frozen at -20°C	Not reported in paper	Not reported in paper	0.005/s D	Preconditioning 2N to 0.2% strain until zero deformation (< 5 cycles usually)
Yahia et al ⁵⁴ (1988)	A methodology for mechanical measurements of technical constants of trabecular bone	Cancellous vertebras	Universal test machine (J.J. Lloyd), pressurized chamber, triaxial test apparatus, test chamber filled with glycerin	4× resistance-type wire strain gauges	Cubic 10 mm	Frozen at -20°C, defatted in carbon tetrachloride for 48hrs and hydrogen peroxide for 40hrs, oven dried at 60°C for 72 hrs	Not reported in paper	Latex membrane to isolate specimen from glycerin	0.012/s ND	Preconditioned until steady state
Zhou et al ⁵⁵ (2014)	Dependence of mechanical properties of trabecular bone on plate-rod microstructure determined by individual trabecula segmentation (ITS)	Cancellous femur, tibia vertebras	Material testing , system (MTS), test at RT	Strain gauge (8 mm, MTS), extensometer (25 mm, MTS)	Cylinder 8 mm diameter, height not reported in paper	Frozen wet airtight at -20°C	Not reported in paper	Brass end caps with glue	0.05%/s D	1 cycle of preconditioning to \pm 0.1% strain

Author (year)	Title	Bone type/ origin	Machine setup	Strain measurement method	Sample dimensions	Sample preparation / storage	Compliance correction	Surface / boundary conditions	Strain or displacement rate / D/ND test	Preload / preconditioning
Cyganik et al ⁵⁶ (2014)	Prediction of Young's modulus of trabeculae in microscale using macro- scale's relationships between bone density and mechanical properties	Cancellous femur	Materials testing machine (MTS)	DIC (Dantec)	Cubic 10 mm	Stored in 70% ethanol at 4°C	Not reported in paper	Not reported in paper	0.5 mm/min D or up to 2000 N	Preload of 1 N
Cyganik et al ^{s7} (2016)	Experimental verification of the relationships between Young's modulus and bone density using DIC	Cancellous femur	Test machine (MTS), test at RT (25°C)	DIC, full field (Dantec)	Cubic 10 mm	Not reported in paper	Not reported in paper	Not reported in paper	0.5 mm/min D or up to 2000 N	Not reported in paper
Cyganik et al ⁵⁸ (2017)	Microscale's relationship between Young's modulus and tissue density. Prediction of displacements	Cancellous femur	Materials testing machine (MTS), test at RT	DIC	Cubic 1 cm \times 1 cm \times 1 cm	Fixed in 70% ethanol, stored in 4°C	No	No	0.04/min load range 0 to 2000 N or until failure	1 N preload
Kalouche et al ⁵⁹ (2010)	Mechanical properties of glenoid cancellous bone	Cancellous shoulder	Compression device (Raith), 100N load cell, test at RT	DIC	Cubic 6 mm	Frozen at -19°C, thawed at RT for 2 hrs	Not reported in paper	Not reported in paper	0.001/s, between 3N and 0.6% strain D	7 cycles until 0.4% strain, preload 3N
Sugita et al ⁶⁰ (1999)	 Anisotropy of osteoporotic cancellous bone 	Cancellous femur	Servo-drive compression test machine (Aiko)	Displacement transducer on lower platen (Kyowadengyou), CCD video-camera (Hitachi)	Cubic 6.5 mm	Frozen at -20°C, thawed at RT in physiological saline	Compliance considered negligible (0.006\µm/N)	Not reported in paper	0.065 mm/s D	Preload of 8.5 N
Deligianni et al ⁶¹ (1994)	Stress relaxation behaviour of trabecular bone specimens	Cancellous femur	Motor driven machine (Schenck)	LVDT extensometer	Cubic 7 mm	Frozen in saline at -20°C, refrigerated in Ringer's solution before testing, thawed at RT	Not reported in paper	Not reported in paper	10/min (up to particular strains)	Preload 2N
Rincón-Kohl and Zysset ⁶² (2009)	i Multi-axial mechanical properties of human trabecular bone	Cancellous femur, tibia radius, vertebras	Custom stainless- , steel loading chamber, servohydraulic machine, 2.5 kN load cell	LVDT	Cylinder 8 mm diameter, 10 mm height	Frozen at -26°C	Tested for and assumed negligible	Aluminium endcaps with PMMA, nitrile membrane (8 mm diameter, 0.5 mm height) to isolate sample from oil, half- sphere platen	0.065%/s D	12 cycles to 0.4% strain
Townsend et al ⁶³ (1975)	The distribution and anisotropy of the stiffness of cancellous bone in the human patella	Cancellous patella	Custom machine for 0-45lb load, beam deflection load cell	LVDT	Cubic 0.22 inches to 0.39 inches	Not reported in paper	Not reported in paper	Not reported in paper	5.3 x 10 ⁻⁴ cm/s D in one direction	Not reported in paper
Yamamoto et al ⁶⁴ (2006)	Development of residual strains in human vertebral trabecular bone after prolonged static and cyclic loading at low load levels	Cancellous vertebras	Static: custom machine; cyclic: servohydraulic machine (MTS), both immersed in PBS and protease inhibitors at 37°C	Static: LVDT; cyclic extensometer	: Cylinder 8 mm diameter, 25 mm height	Marrow removed with water jet, frozen	Not reported in paper	End caps, cyanoacrylate glue, latex rubber and O rings	Static: ratio of stress/YM of 0.00075 or 0.0015 for 125 000 secs; cyclic: ratio of 0.0015 at 8 Hz for 1 mil cycles (125 000 cycles) D	Static: 10 preconditioning cycles 0N to10N; cyclic: 10 cycles 0N to 10N

BONE & JOINT RESEARCH

Author (year)	Title	Bone type/ origin	Machine setup	Strain measurement method	Sample dimensions	Sample preparation / storage	Compliance correction	Surface / boundary conditions	Strain or displacement rate / D/ND test	Preload / preconditioning
Follet et al ⁶⁵ (2004)	The degree of mineralization is a determinant of bone strength: a study on human calcanei	Cancellous calcaneus	Screwdriven machine (Schenck), 5 kN Load Cell, tested in 37°C saline bath	Displacement transducer	Cubic 9 mm	Frozen before testing at -20°C, preserved in 50% ethanol-saline at 4°C for 3 to 4 days then RT for 4 hrs before testing	Not reported in paper	Not reported in paper	Not reported in paper D	Not reported in paper
Follet et al ⁶⁶ (2005)	Relationship between compressive properties of human os calcis cancellous bone and microarchitecture assessed from 2D and 3D synchrotron microtomography	Cancellous calcaneus	Screwdriven machine (Schenck), 5 kN load cell, tested in saline bath at 37°C	Displacement transducer	Cubic 9 mm	Frozen then defrosted in 50% saline-ethanol solution for 3 days at 4°C, then at RT for 2 hrs to 4 hrs	Not reported in paper	Not reported in paper	0.5 mm/min D	10 cycles to 0.6% strain
Follet et al ⁶⁷ (2007)	Intrinsic mechanical properties of trabecular calcaneus determined by finite-element models using 3D synchrotron microtomography	Cancellous calcaneus	Test machine (Schenck), 2 kN Load Cell, tested in saline solution at 37°C	Displacement transducer	Cubic 9 mm	Frozen, thawed in 50% saline-ethanol for 3 days at 4°C and at RT for 2 hrs to 4 hrs	Not reported in paper	Not reported in paper	0.5 mm/min D	10 cycles limited to 0.5% strain (in 3 directions)
Follet et al ⁶⁸ (2011)	Effects of preexisting microdamage, collagen cross-links, degree of mineralization, age, and architecture on compressive mechanical properties of elderly human vertebral trabecular bone	Cancellous vertebras	Moving magnet linear motor machine (Bose- Enduratec), 2.25 kN load cell, tested at RT	Displacement transducer	Cylinder 8.25 mm diameter, 10 mm height	Frozen in saline at -20°C	Not reported in paper	Aluminium end caps embedded in methyl methacrylate resin	0.0005/s D to 3% strain	0.0005/s at 1 Hz for 10 cycles from 0.1% to 0.3% strain
Erivan et al ⁶⁹ (2017)	Rehydration improves the ductility of dry bone allografts	Cancellous femur	Traction device (MTS) with compression plates	Machine crosshead displacement	Cubic 10 mm ³	Group 1: fresh wet frozen, thawed at RT for 12 hrs; group 2: dried/ sterilized (Osteopure technique); group 3: as group 2, then rehydrated in saline for 10 mins	No	Not reported in paper	3 mm/min D	Not reported in paper
Anderson et al ⁷⁰ (1992)	Compressive mechanical properties of human cancellous bone after gamma irradiation	Cancellous tibia	Servohydraulic machine (MMED), 2200 N load cell, tested at 21°C	Not reported in paper	Parallelepiped 2 cm × 1 cm × 1 cm	Frozen at -80°C, stored at -20°C, thawed at RT in a water bath	Yes	Not reported in paper	1%/s D	Preload of 5 N, 5 cycles to 0.1 mm displacement
Badiei et al ⁷¹ (2007)	Influence of orthogonal overload on human vertebral trabecular bone mechanical properties	Cancellous vertebras	Screwdriven machine (Hounsfield)	Not reported in paper	Cubic 10 mm	Frozen in saline at -30°C	Measured, considered negligible	0.14 mm latex layer, pivoting platen	1 mm/min up to 10% strain D	Not reported in paper
Banse et al ⁷² (1996)	recomparative left-right mechanical testing of cancellous bone from normal femoral heads	Cancellous femur	Screwdriven machine (UTS), 100 kN load cell, compressed different locations on slice, test at RT	Not reported in paper	Varied cross- sectional shape, 9 mm height, 2 mm hole in centre	Embedded in polyurethane resin, frozen at -20°C	Measured, considered negligible (<5%)	Not reported in paper	1 mm/min D	Not reported in paper

Author (year)	Title	Bone type/ origin	Machine setup	Strain measurement method	Sample dimensions	Sample preparation / storage	Compliance correction	Surface / boundary conditions	Strain or displacement rate / D/ND test	Preload / preconditioning
Baroud et al ⁷³ (2003)	Material changes in osteoporotic human cancellous bone following infiltration with acrylic bone cement for a vertebral cement augmentation	Cancellous vertebras	Materials testing machine (MTS)	Not reported in paper	Cylinder 12mm diameter, 12mm height	Frozen at -20°C then thawed	Not reported in paper	Confined or free	1% strain in steps, then 5 min wait, max. displacement of 1.2 mm (~10% strain)	Not reported in paper
Bentzen et al ⁷⁴ (1987)	Mechanical strength of tibial trabecular bone evaluated by X-ray computed tomography	Cancellous tibia	Universal testing machine (Instron)	Not reported in paper	Cylinder 8 mm diameter, 8 mm height	Frozen at -21°C in Ringer's solution, thawed at RT	Not reported in paper	Not reported in paper	5 mm/min (~0.01s ⁻¹) D	Not reported in paper
Bevill et al ⁷⁵ (2009)	The influence of boundary conditions and loading mode on high-resolution finite element-computed trabecular tissue properties	Cancellous vertebras	Not reported in paper	Not reported in paper	Cylinder 8 mm diameter, 25 mm height	Not reported in paper	Not reported in paper	Group 1: PMMA and brass endcaps; group 2: brass rod wells, fixed in PMMA	ND (up to 0.2% strain) + D	Not reported in paper
Birnbaum et al ⁷⁶ (2001)	Material properties of trabecular bone structures	Cancellous femur	Servohydraulic machine (Schenck), 16kN micro-pulser, tested at 21°C	Not reported in paper	Cylinder 24mm diameter, 11mm height	Frozen at -20°C	Not reported in paper	Teflon plates (0.85 mm)	1 mm/min D	Preload of 7.5 N
Bollerslev et al ⁷⁷ (1989)	Biomechanical competence of iliac crest trabecular bone in autosomal dominant osteopetrosis type I	Cancellous iliac crest	Materials testing machine (Alwetron)	Not reported in paper	Cylinder 7 mm diameter, 5 mm height	Frozen, thawed at 20°C in Ringer's solution for 30 mins	Not reported in paper	Not reported in paper	2mm/min	Not reported in paper
Bone et al ⁷⁸ (2015)	The influence of the strength of bone on the deformation of acetabular shells: A laboratory experiment in cadavers	Cancellous femur	Materials testing machine (Instron)	Not reported in paper	Cylinder mean 7.8mm diameter, mean 12.7mm height	Not reported in paper	Not reported in paper	Not reported in paper	20%/min D	Not reported in paper
Brown and Ferguson Jr ⁷⁹ (1980)	Mechanical property distributions in the cancellous bone of the human proximal femur	Cancellous femur	Universal testing machine (Instron)	Not reported in paper	Cubic 5 mm	Frozen at -10°C, thawed before testing	Stiffening artefact corrected digitally	Not reported in paper	0.02 mm/s D + ND	Not reported in paper
Brown et al ⁸⁰ (2002)	Regional differences in mechanical and material properties of femoral head cancellous bone in health and osteoarthritis	Cancellous femur	Materials testing machine (E.S.H.)	Not reported in paper	Cylinder 12mm diameter, 16mm height	Frozen	Not reported in paper	Not reported in paper	0.25 mm/min not reported in paper	Not reported in paper
Carter et al ⁸¹ (1980)	Tensile fracture of cancellous bone	Cancellous femur	Loading system (MTS), tested at 21°C	Not reported in paper	Cylinder 10mm diameter, height 10mm	Defatted in methanol and chloroform, frozen, thawed, dried overnight at RT, rehydrated with saline before test	Yes for embedded ends of specimen	Embedded in polyester resin, glued to platen	0.01/s D	Not reported in paper
Carter and Hayes ⁸² (1977)	The compressive behavior of bone as a two-phase porous structure	Cancellous tibia	Electrohydraulic machine (MTS), porous compression platen	Not reported in paper	Cylinder 20.6mm diameter, 5mm height	Half were defatted, frozen at -20°C, thawed before testing	Yes	Confined in steel annulus	Varied (0.001- $10.0/s$), D test up to > 50% of original thickness	Not reported in paper

Author (year)	Title	Bone type/ origin	Machine setup	Strain measurement method	Sample dimensions	Sample preparation / storage	Compliance correction	Surface / boundary conditions	Strain or displacement rate / D/ND test	Preload / preconditioning
Cesar et al ⁸³ (2017)	Axial compressive strength of human vertebras trabecular bones classified as normal, osteopenic and osteoporotic by quantitative ultrasonometry of calcaneus	Cancellous vertebras	Universal testing machine (Kratos), 981 N load cell	Not reported in paper	Cylinder 10mm diameter, 20mm height	Frozen -20°C in physiological saline, stored in amber vial at 4°C post-cut, kept at RT (21°C) in saline 1 hr before testing	Not reported in paper	Not reported in paper	5 mm/min	Not reported in paper
Charlebois et al ⁸⁴ (2010)	The role of fabric in the large strain compressive behavior of human trabecular bone	Cancellous vertebras, radius, femur, calcaneus	Mechanical testing machine (MTS)	Not reported in paper	Cylinder 7.5 mm diameter, 11.5 mm height	Frozen, thawed overnight	Not reported in paper	Tested with or without confinement tubes, glued to rods	0.13%/s (0.015 mm/s) up to 1500N or 10 mm displacement	10 preconditioning cycles
Chevalier et al ⁸⁵ (2007)	Validation of a voxel-based FE method for prediction of the uniaxial apparent modulus of human trabecular bone using macroscopic mechanical tests and nanoindentation	Cancellous femur	Testing machine (MTS)	Not reported in paper	Cylinder 8mm diameter, 12mm height	Marrow removed in ultrasound bath with mild soap at 40°C, dried at RT for 1 day, thawed at RT	Not reported in paper	Glued with epoxy mix to stainless-steel rods and cured at 40°C for 24 hrs	0.083/s for 10 cycles ND	Not reported in paper
Christensen et al ⁸⁶ (1981)	Mechanical testing of trabecular bone in knee replacement	Cancellous tibia	Hydraulic machine (Instron)	Not reported in paper	Cylinder 12mm diameter, 8mm height	Frozen at -18°C, thawed at RT	Not reported in paper	Not reported in paper	Not reported in paper D	Not reported in paper
Du et al ⁸⁷ (2006)	An experimental study on the biomechanical properties of the cancellous bones of distal femur	Cancellous femur	Multiple automatic electronic testing machine (Shimadzu), saline bath	Not reported in paper	Parallelepiped ~16mm × ~10mm × ~10mm	Frozen in saline at -20°C, thawed at RT	Not reported in paper	Not reported in paper	2 mm/min D	Not reported in paper
Ciarallo et al ⁸⁸ (2006)	An approach to compare the quality of cancellous bone from the femoral necks of healthy and osteoporotic patients through compression testing and microcomputed tomography imaging	Cancellous femur	Materials testing system (Instron), 50 kN load cell	Not reported in paper	Cylinder, 7.5 mm diameter, 14 mm height	Stored in 70% ethanol, frozen in saline at-30°C, thawed overnight at 4°C	Not reported in paper	Not reported in paper	1 mm/min D	Not reported in paper
Ciarelli et al ⁸⁹ (1991)	Evaluation of orthogonal mechanical properties and density of human trabecular bone from the major metaphyseal regions with materials testing and computed tomography	Cancellous tibia, femur radius, humerus	Materials testing , machine (Instron), test at RT	Not reported in paper	Cubic 8 mm	Frozen at -10°C in Ringer's solution	Yes	Embedded in aluminium block with plaster mix	1%/s, loaded to incipient yield in two directions, then loaded to failure in third direction	3 to 6 cycles to 40% to 60% of ultimate load until repeatable load-displacement curve produced
Cody et al ⁹⁰ (1996)	Predictive value of proximal femoral bone densitometry in determining local orthogonal material properties	Cancellous femur	Materials testing machine (MTS)	Not reported in paper	Cubic 8 mm	Frozen at -30°C, thawed in water bath for 1hr, refrozen in Ringer's solution then thawed at RT	Not reported in paper	Not reported in paper	1%/s up to 1% strain or 1%/s up to 15% strain ND	10 cycles to 1% strain at 1%/s
Conrad et al ⁹¹ (1993)	The effects of freeze- drying and rehydration on cancellous bone	Cancellous tibia, femur	Hydraulic machine (MTS)	Not reported in paper	Cylinder 14mm diameter, 15mm height	Frozen at -80°C before freeze drying, thawed for 10 mins, varied rehydration protocols	Not reported in paper	Not reported in paper	Not reported in paper D	Not reported in paper

Table i. (Continu	ed)
-------------------	------

Author (year)	Title	Bone type/ origin	Machine setup	Strain measurement method	Sample dimensions	Sample preparation / storage	Compliance correction	Surface / boundary conditions	Strain or displacement rate / D/ND test	Preload / preconditioning
Cornu et al ⁹² (2011)	Synergetic effect of freeze-drying and gamma irradiation on the mechanical properties of human cancellous bone	Cancellous femur	100 kN screwdriven model (UTS)	Not reported in paper	8 mm slices	Various freeze- drying protocols, all samples then frozen and thawed at RT for 2 hrs before test, freeze dried samples rehydrated for 30min in saline	Not reported in paper	Not reported in paper	Not reported in paper D	Not reported in paper
Ding et al ⁹³ (2012)	Three-dimensional microarchitecture of adolescent cancellous bone	Cancellous tibia	Materials testing machine (MTS), 1 kN load cell	Not reported in paper	Cubic 8 mm \times 8 mm \times 8 mm	Frozen at -20°C, thawed at RT for 2 hrs	Not reported in paper	Not reported in paper	0.002/s ND up to 0.6% strain	10 cycles between 3 N and 0.006 strain
Ding et al ⁹⁴ (2002)	Age-related variations in the microstructure of human tibial cancellous bone	Cancellous tibia	Hydraulic machine (MTS), 1 kN load cell	Not reported in paper	Cylinder 7.5 mm diameter, 7.5 mm height	Frozen at -20°C	Not reported in paper	Not reported in paper	0.002/s ND to 0.6% strain	10 cycles between preload of 3 N
Fazzalari et al ⁹⁵ (1998)	Assessment of cancellous bone quality in severe osteoarthrosis: Bone mineral density, mechanics, and microdamage	Cancellous femur	Materials testing machine (Hounsfield)	Not reported in paper	Cylinder 10mm diameter, 10mm height	Frozen at -20°C, thawed at RT in saline	Not reported in paper	Pivoted lower platen, latex on specimen ends	0.017/s Until failure, 25% deformation or 200N load	Not reported in paper
Goldstein et al ⁹⁶ (1983)	The mechanical properties of human tibial trabecular bone as a function of metaphyseal location	Cancellous tibia	Materials testing machine (Instron)	Not reported in paper	Cylinder 7 mm diameter, 10 mm height	Frozen in -20°C, then in Ringer's solution for 20 mins	Not reported in paper	Not reported in paper	0.1%/s D	Preload of 1.3 MPA
Goulet et al ⁹⁷ (1994)	The relationship between the structural and orthogonal compressive properties of trabecular bone	Cancellous tibia, femur iliac crest, radius, humerus, vertebras	Materials Testing , machine (Instron)	Not reported in paper	Cubic 8 mm	Stored in lactated Ringer's solution, frozen at -20°C	Yes	Not reported in paper	0.01/s D	10 cycles to 50% to 60% of ultimate strength
Grieb et al ⁹⁸ (2005)	Effective use of optimized, high-dose (50 kGy) gamma irradiation for pathogen inactivation of human bone allografts	Cancellous origin not reported in paper	Servohydraulic machine (MTS)	Not reported in paper	Cylinder 12mm to 18mm diameter, 10mm height	Freeze-dried to residual moisture of ~8%, rinsed in deionized water for 30s, rehydrated in 0.9% saline	Not reported in paper	Not reported in paper	5 mm/min Not reported in paper	Not reported in paper
Han et al ⁹⁹ (1997)	The ability of quantitative ultrasound to predict the mechanical properties of trabecular bone under different strain rates	Cancellous tibia	Not reported in paper	Not reported in paper	Cylinder 10mm diameter, 14.5mm height	Not reported in paper	Not reported in paper	Self-levelling platens	0.0004/s or 0.08/s or 200 times faster D	Not reported in paper
Hvid ¹⁰⁰ (1985)	Cancellous bone at the knee: A comparison of two methods of strength measurement	Cancellous femur, tibia	Universal testing machine (Instron), test at RT	Not reported in paper	Cylinder mean 5.29 mm diameter, mean 6.38 mm height	Frozen in saline at -30°C, thawed before testing	Not reported in paper	Not reported in paper	0.013/s D	Not reported in paper
Hvid and Jensen ¹⁰¹ (1984)	Cancellous bone strength at the proximal human tibia	Cancellous tibia	Testing Machine (Instron), test at RT	Not reported in paper	Cylinder 7.5 mm diameter, 8.5 mm height	Frozen in Ringer's solution at -30°C	Not reported in paper	Not reported in paper	0.01/s D	No
Hvid et al ¹⁰² (1983)	Compressive strength of tibial cancellous bone: Instron and osteopenetrometer measurements in an autopsy material	Cancellous tibia	Testing machine (Instron)	Not reported in paper	Cylinder 8 mm diameter, 8 mm height	Frozen at -18°C	Not reported in paper	Not reported in paper	2 mm/min D	Not reported in paper

Author (year)	Title	Bone type/ origin	Machine setup	Strain measurement method	Sample dimensions	Sample preparation / storage	Compliance correction	Surface / boundary conditions	Strain or displacement rate / D/ND test	Preload / preconditioning
Keyak et al ¹⁰ (1996)	³ Postfailure compressive behavior of tibial trabecular bone in three anatomic directions	Cancellous tibia	Servohydraulic machine (Matco)	Not reported in paper	Cubic 15 mm	Frozen	Not reported in paper	Not reported in paper	0.15 mm/s D to 2 mm displacement	Preload to 5 N at 0.5% strain, repeated until 5 N position was reproducible
Lambers et al ¹⁰⁴ (2014)	The effects of tensile- compressive loading mode and microarchitecture on microdamage in human vertebral cancellous bone	Cancellous vertebras	Materials testing device	Not reported in paper	Cylinder 8 mm diameter, 25 mm to 30 mm height	Stained with xylenol orange in PBS for 2 hrs	Not reported in paper	Brass fixtures and bone cement	0.5%/s D up to 0.8% strain	Not reported in paper
Leichter et al ¹⁰⁵ (1990)	Acoustic emission from trabecular bone during mechanical testing: the effect of osteoporosis and osteoarthritis	Cancellous femur	Materials testing machine (J. J. Lloyd)	Not reported in paper	Cylinder 10mm diameter, 10mm height	Frozen at -18°C, thawed at RT	Not reported in paper	Not reported in paper	0.1/min D	Not reported in paper
Díaz León et al ¹⁰⁶ (2016)	Mechanical characterization of bone allografts, enriched with mesenchymal cells	Cancellous, cortical or mixed long bones	Testing machine (Instron)	Not reported in paper	Cubic 5 mm \times 5 mm \times 5 mm	Added mesenchymal stem cells	Not reported in paper	Rotating lower platen	1 mm/min Not reported in paper	Not reported in paper
Li et al ¹⁰⁷ (2012)	Difference in subchondral cancellous bone between postmenopausal women with hip osteoarthritis and osteoporotic fracture: Implication for fatigue microdamage, bone microarchitecture, and biomechanical properties	Cancellous femur	Servohydraulic machine (Instron)	Not reported in paper	Parallelepiped 15 mm × 15 mm × 10 mm	Frozen in saline -20°C, thawed at RT	Not reported in paper	Ν	2 mm/min D	Not reported in paper
Linde et al ¹⁰⁸ (1990)	³ Three-axial strain controlled testing applied to bone specimens from the proximal tibial epiphysis	Cancellous tibia	Material testing machine (Instron)	Not reported in paper	Cubic 7 mm	Not reported in paper	Not reported in paper	Not reported in paper	0.1/s ND test between 5 N and 0.5%	5 to 10 cycles until steady state
Linde et al ¹⁰⁹ (1985)	Material properties of cancellous bone in repetitive axial loading	Cancellous tibia	Universal testing machine (Instron)	Not reported in paper	Cylinder 8mm diameter, 8mm height	Frozen, thawed before testing	Not reported in paper	Not reported in paper	0.01/s 10 cycles Up to 50% of ultimate strength	Not reported in paper
Linde et al ¹¹⁰ (1988)	Mechanical properties of trabecular bone by a non- destructive compression testing approach	Cancellous tibia	Screwdriven machine (Instron)	Not reported in paper	Cylinder 7.5 mm diameter, 7.5 mm height	Not reported in paper	Not reported in paper	Not reported in paper	0.01/s	~10 cycles 0.2 Hz up to 5 N
Liu et al ¹¹¹ (2013)	Quasi-static compressive and tensile tests on cancellous bone in human cervical spine	Cancellous vertebras	Microtester machine (Instron)	Not reported in paper	Parallelepiped mean 5.36 mm \times 6.29 mm \times 9.81 mm	Not reported in paper 0.001/s	Not reported in paper	Lubrication on contact surfaces, ball joint anvil	0.001/s D	19 cycles up to 0.3% strain, 0.001/s
Lv et al ¹¹² (2015)	Comparison of microstructural and mechanical properties of trabeculae in femoral head from osteoporosis patients with and without cartilage lesions: a case-control study	Cancellous femur	Dual column testing system (Instron), 10 kN load cell	Not reported in paper	Cylinder 12mm diameter, height 20% of head height	Dry frozen at -80°C	Not reported in paper	Not reported in paper	1%/min D	Not reported in paper

Author (year)	Title	Bone type/ origin	Machine setup	Strain measurement method	Sample dimensions	Sample preparation / storage	Compliance correction	Surface / boundary conditions	Strain or displacement rate / D/ND test	Preload / preconditioning
Martin et al ¹¹³ (1998)	Noninvasive assessment of stiffness and failure load of human vertebras from CT-data	Cancellous vertebras	Material testing apparatus (Shimadzu), 5 kN load cell	Not reported in paper	Cubic 10 mm	Frozen or stored in buffered formalin, stored at 100% relative humidity	Not reported in paper	Not reported in paper	0.1/mm D	Not reported in paper
Mosekilde et al ¹¹⁴ (1987)	Biomechanical competence of vertebral trabecular bone in relation to ash density and age in normal individuals	Cancellous vertebras	Testing machine (Alwetron)	Not reported in paper	Cylinder 7 mm diameter, 5 mm height	Frozen at -20°C, thawed at 20°C in Ringer's solution for 30 mins	Not reported in paper	Platen mounted on steel ball bearing	2 mm/min D	Ν
Nazarian et al ¹¹⁵ (2007)	Densitometric, morphometric and mechanical distributions in the human proximal femur	Cancellous femur	Custom build screwdriven machine (Nazarian and Muller)	Not reported in paper	Cylinder 2:1 ratio (5 mm diameter, 10 mm height)	, Not reported in paper	Not reported in paper	Brass endcaps with cyanoacrylate glue	0.01/s D	0.005/s strain for 7 cycles
Nicholson et al ¹¹⁶ (1997)	Structural and material mechanical properties of human vertebral cancellous bone	Cancellous vertebras	Materials testing machine (J.J. Lloyd)	Not reported in paper	Cubic 20 mm	Defatted by cold water jet, immersed in excess trichloroethylene for 12 hrs, re-rinsed in methanol, air dried for 6 hrs, frozen at -20°C	Not reported in paper	Ball bearing loading system	1 mm/min ND	3 cycles of increasing load and return to preload of 30N
Nicholson and Strelitzki ¹¹⁷ (1999)	On the prediction of Young's modulus in calcaneal cancellous bone by ultrasonic bulk and bar velocity measurements	Cancellous calcaneus	Materials testing machine (J.J. Lloyd)	Not reported in paper	Cubic 20 mm	Defatted using water jet and trichloroethylene	Not reported in paper	Not reported in paper	Not reported in paper	3 cycles to 0.6% strain
Njeh et al ¹¹⁸ (1997)	Prediction of human femoral bone strength using ultrasound velocity and BMD an in vitro study	Cancellous femur	Testing machine (Instron), load cell 20N to 10kN, test at RT	Not reported in paper	Cubic 20 mm	Fixed in formalin, Frozen at -80°C for ≥ 3 mths	Not reported in paper	Not reported in paper	0.5 mm/min D	Not reported in paper
Ozan et al ¹¹⁹ (2017)	Micro-CT and mechanical evaluation of trabecular bone structure in osteopenic and osteoporotic fractures	Cancellous femur	100 kN test machine (Shimadzu)	Not reported in paper	Rectangular, prism-shaped 3 cm × 2 cm × 2 cm	Frozen at -18°C, defrosted 24 hrs before testing	Not reported in paper	Not reported in paper	0.04 mm/s until 4 mm displacement	Not reported in paper
Portero- Muzy et al ¹²⁰ (2007)	Eulerstrut.cavity, a new histomorphometric parameter of connectivity reflects bone strength and speed of sound in trabecular bone from human os calcis	Cancellous os calcis	Universal screwdriven machine (Schenck), 5 kN load cell, tested in saline 37°C	Not reported in paper	Cylinder 14mm diameter, 9mm height	Frozen at -20°C	Not reported in paper	Free rotating bottom platen	0.5 mm/min D	10 cycles of preloading to steady state
Pothuaud et al ¹²¹ (2002)	Combination of topological parameters and bone volume fraction better predicts the mechanical properties of trabecular bone	Cancellous vertebras	Materials testing machine (Alwetron)	Not reported in paper	Cylinder 7 mm diameter, 5 mm height	Dried specimens	Not reported in paper	Steel ball bearing on endplates	2 mm/min D	Not reported in paper
Poukalova et al ¹²² (2010)	Pullout strength of suture anchors: effect of mechanical properties of trabecular bone	Cancellous humerus	Universal testing machine (Instron)	Not reported in paper	Cylinder 8 mm diameter, 12 mm height	Frozen at -20°C, thawed at RT for 24 hrs	Not reported in paper	Not reported in paper	0.1%/s up to 60% strain	Not reported in paper
Poumarat et al ¹²³ (1993)	Comparison of mechanical properties of human, bovine bone and a new processed bone xenograft	Cancellous femur	Materials testing machine (Hounsfield), test at RT	Not reported in paper	Parallelepiped 15 mm × 12.5 mm × 8 mm	Washed in saline, then in gentamycin- supplemented saline, wet frozen at -30°C, thawed	Not reported in paper	Not reported in paper	0.025 mm/min D	Not reported in paper

Author (year)	Title	Bone type/ origin	Machine setup	Strain measurement method	Sample dimensions	Sample preparation / storage	Compliance correction	Surface / boundary conditions	Strain or displacement rate / D/ND test	Preload / preconditioning
Rauh et al ¹²⁴ (2014)	Comparative biomechanical and microstructural analysis of native versus peracetic acid-ethanol treated cancellous bone graft	Cancellous tibia	Materials testing machine (Instron), test at RT	Not reported in paper	Cylinder 12mm diameter, 15mm height	Fat removed (high pressure sterile water for 30 mins, chloroform- methanol incubation for 2 hrs, methanol for 15 mins to remove chloroform, sterile deionized water to remove methanol, frozen at -20°C, thawed for 24 hrs in saline at RT	Not reported in paper	Not reported in paper	0.07 mm/s D, maximum load 10 kN	Not reported in paper
Rho et al ¹²⁵ (1997)	The characterization of broadband ultrasound attenuation and fractal analysis by biomechanical properties	Cancellous tibia	Not reported in paper	Not reported in paper	Cubic 15 mm	Stored in normal saline at 4°C	Not reported in paper	Not reported in paper	0.01%/s ND up to 0.35% strain	Not reported in paper
Rodrigues et al ¹²⁶ (2012)	Low osteocalcin/collagen type I bone gene expression ratio is associated with hip fragility fractures	Cancellous femur	Universal testing machine (Instron), load cell 10kN	Not reported in paper	Cylinder 15 mm diameter, height dependent on epiphysis size	Defatted for 3 hrs in chloroform and methanol, hydrated overnight in saline, frozen at -80°C, thawed at RT	Not reported in paper	Not reported in paper	0.1 mm/s D	Not reported in paper
Seo et al ¹²⁷ (2014)	Efficacy of dual energy X-ray absorptiometry for evaluation of biomechanical properties: bone mineral density and actual bone strength	Cancellous vertebras	Compression testing machine (Texture Technologies)	Not reported in paper	Parallelepiped ~15 mm × 10 mm × 15 mm	Embedded in 10% formalin solution for 24 hrs	Not reported in paper	Not reported in paper	0.2 mm/s D	Not reported in paper
Shim et al ¹²⁸ (2006)	Characterisation of the dynamic compressive mechanical properties of cancellous bone from the human cervical spine	Cancellous vertebras	Universal testing machine (Instron)	Not reported in paper	Parallelepiped 5 mm × 5 mm × 8 mm	Not reported in paper	Not reported in paper	Not reported in paper	0.001/s D	Not reported in paper
Sierpowska, et al ¹²⁹ (2005)	Prediction of mechanical properties of human trabecular bone by electrical measurements	Cancellous femur, tibia	Not reported in paper	Not reported in paper	Cylinder 16mm diameter, 8mm height	Sprayed with PBS to hydrate, frozen at -20°C for 12 mths	Not reported in paper	Not reported in paper	0.0045/s D up to 5% strain	5 cycles to 0.5% strain, pre-stress of 100 kPa for 2 mins
Steinhauser et al ¹³⁰ (2006)	Biomechanical investigation of the effect of high hydrostatic pressure treatment on the mechanical properties of human bone	Cancellous femur	Universal testing machine (Zwick), 2 kN load cell	Not reported in paper	Cylinder 7.2 mm diameter, 14.4 mm height	Frozen at -20°C	Not reported in paper	Not reported in paper	5 mm/min D: until load decrease of > 10% of maximum	Preload 2N at 10mm/min
Stoppie et al ¹³¹ (2006)	Structural and radiological parameters for the characterization of jawbone	Cancellous mandible	Not reported in paper	Not reported in paper	Cylinder 6 mm diameter, 8 mm height	Formalin embalmed, frozen with nitrogen into cupper rod to remove cortex, frozen at -20°C in saline	Not reported in paper	Brass end caps with glue	0.2 mm/min D	Preload 3 N, 10 to 15 cycles at 0.2 mm/min up to 0.6% strain

Author (year)	Title	Bone type/ origin	Machine setup	Strain measurement method	Sample dimensions	Sample preparation / storage	Compliance correction	Surface / boundary conditions	Strain or displacement rate / D/ND test	Preload / preconditioning
Sun et al ¹³² (2008)	Difference in femoral head and neck material properties between osteoarthritis and osteoporosis	Cancellous femur	Materials testing machine (MTS)	Not reported in paper	Cubic 1cm	Frozen at -10°C, defrosted for 24 hrs	Not reported in paper	Not reported in paper	0.04 mm/s D	Not reported in paper
Thurner et al ¹³³ (2009)	The effect of NaF in vitro on the mechanical and material properties of trabecular and cortical bone	Cancellous vertebras	Custom testing device, immersed in Na-buffer during testing	Not reported in paper	Parallelepiped 4 mm × 4.9 mm × 4.9 mm	Frozen at -20°C, then in Na-buffer (control) or saturated Na-buffer for 20hrs, thawed in NaCL and Hepes solution at pH 7.0 at RT, marrow removed with water jet	Not reported in paper	Not reported in paper	50%/s up to 50% D	Preload of 0.5 N
Vale et al ¹³⁴ (2013)	At the moment of occurrence of a fragility hip fracture, men have higher mechanical properties values in comparison with women	Cancellous femur	Universal testing machine (Instron), 10 kN load cell	Not reported in paper	Cylinder 15 mm diameter, 30 mm height	Defatted for 3 hrs in chloroform and methanol solution, hydrated overnight in PBS solution, frozen at -80°C, thawed at RT	Not reported in paper	Not reported in paper	0.1 mm/s D	Not reported in paper
Vale et al ¹³⁵ (2013)	Micro-CT and compressive characterization of trabecular bone	Cancellous femur	Universal testing machine (Instron), 10 kN load cell	Not reported in paper	Cylinder 5 mm diameter, 15 mm height, or 15 mm diameter, 30 mm height	Defatted for 3 hrs in chloroform and methanol solution, hydrated overnight in PBS solution. Frozen at -80°C, thawed at RT	Not reported in paper	Not reported in paper	0.1 mm/s D	Not reported in paper
Vastel et al ¹³ (2004)	⁶ Effect of different sterilization processing methods on the mechanical properties of human cancellous bone allografts	Cancellous femur	Screw-filled tensile- compression machine (Wolpert)	Not reported in paper	Cubic 9 mm	Frozen in saline at -80°C, thawed at RT	Not reported in paper	Not reported in paper	2 mm/min D	Not reported in paper
Wells and Rawlings ¹³⁷ (1985)	Acoustic emission and mechanical properties of trabecular bone	Cancellous tibia, femur	Screwdriven testing machine	Not reported in paper	Cubic 15 mm	Frozen at -18°C	Not reported in paper	Series 1: mounted in steel pot; series 2: contained in PTFE tape with holes	Range of 0.1 mm/min to 5.0 mm/min; not reported in paper	Not reported in paper
Zhang et al ¹³⁸ (2010)	Micro-CT and mechanical evaluation of subchondral trabecular bone structure between postmenopausal women with osteoarthritis and osteoporosis	Cancellous femur	Mechanical testing machine (Critm Co.)	Not reported in paper	Cylinder, 5 mm diameter, 10 mm height	Not reported in paper	Not reported in paper	Not reported in paper	2 mm/min D	Not reported in paper
Zhu et al ¹³⁹ (1994)	Effects of specimen load- bearing and free surface layers on the compressive mechanical properties of cellular materials	Cancellous vertebras	Materials test system (MTS), irrigated with saline	Not reported in paper	Parallelepiped 9 mm × 9mm × 5 mm, 9 mm, or 16 mm height	Frozen at -30°C, thawed at RT for 2 hrs	Yes (~1.5×10⁻ ⁵mm/N)	Lubricated platens, platen annulus to centre specimens	1%/s ND but D for short specimens	Not reported in paper

D/ND, destructive/non-destructive; MTS, materials testing machine; RT, room temperature; PMMA, polymethyl methacrylate; Gd-DTPA, gadopentetic acid; HBSS, Hank's Balanced Salt Solution; µFE, micro finite element; DIC, Digital Image Correlation; CCD, charge-coupled device; LVDT, linear variable differential transformer; PBS, phosphate-buffered saline; PTFE, polytetrafluoroethylene

Table ii. Papers included in qualitative synthesis – studies using both cancellous and cortical bone specimens or mixed specimens; articles are ordered according to method of strain measurement and secondly according to author (alphabetical order); where "Not reported in paper" is written, no information has been provided regarding that subject

Author (year)	Title	Bone type/ origin	Machine setup	Strain measurement method	Sample dimensions	Sample preparation / storage	Compliance correction	Surface / boundary conditions	Strain or displacement rate / D/ND test	Preload / precondi- tioning
Bayraktar et al ¹⁴⁰ (2004)	Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue	Cancellous and cortical, femur	Servohydraulic machine (MTS)	Extensometer (5 mm)	Cancellous: Cylinder 8 mm diameter, 32 mm height Cortical: parallel piped 2.5 mm × 30 mm × 11 mm	Frozen hydrated and air-tight at -20°C	Not reported in paper	End caps, cortical specimens embedded in PMMA	Cancellous: 0.5%/s, ND (0.2% yield); cortical: 0.2%/s	Not reported in paper
Samuel et al ¹⁴¹ (2016)	Effect of water on nanomechanics of bone is different between tension and compression	Not reported in paper, femur	Servohydraulic machine (MTS), PBS continuously dripped onto control specimens	Extensometer on gauge region	Cylinder 3 mm diameter, 5 mm height	Dry group: dehydrated at 70°C and 25 in. Hg vacuum for 8 hrs; control: PBS soaked gauze frozen at -20°C	No	Strip of absorbent paper wrapped on specimen during test	Multiple loading cycles with incremental strains, 150s relax period between cycles, unload to baseline of 5 N, further 150s relax period D	Not reported in paper
McElhaney et al ¹⁴² (1970)	Mechanical properties of cranial bone	Mixed cranium	Electromatic testing machine (Tinius Olsen)	Stiff strain gauge load ring, compliant strain gauge cantilever contact arm	Cube machined from 20mm cylindrical core	Embalmed and fresh specimens, stored in isotonic saline buffered with calcium	Not reported in paper	Not reported in paper	0.01 inch/min D in a third of samples	Not reported in paper
Reilly et al ¹⁴³ (1974)	¹ The elastic modulus for bone	Not reported in paper, femur	Testing machine with loading pendulum	Strain gauge extensometer	Parallelepiped 5 mm \times 5 mm \times 15 mm (2 mm \times 6 mm central diameter)	Frozen in saline at -20°C	Not reported in paper	Not reported in paper	0.05/s; not reported in paper	Not reported in paper
El Masri et al ¹⁴⁴ (2012)	Apparent Young's modulus of vertebral cortico- cancellous bone specimens	Mixed vertebras	Universal testing machine (Instron), 5 kN load cell, test at RT	LVDT sensor	Pseudo- parallelepiped 12 mm × 10 mm × 3 mm	Frozen at -20°C, thawed at 20°C for ≥2hrs	Not reported in paper	Not reported in paper	1 mm/min D	Preload 10N, 10 cycles between 0.1% to 03% strain
Li et al ¹⁴⁵ (2017)	Biomechanical analysis of the posterior bony column of the lumbar spine	Mixed vertebras	Universal testing machine	Machine crosshead displacement	Irregular geometry; unable to process standard pieces	Wrapped in saline soaked gauze, frozen -20°C, thawed at RT	Not reported in paper	Embedded on both ends in denture powder and resin	0.01 mm/s D	Preload 5 N
Balsly et al ¹⁴ 2008)	⁶ Effect of low dose and moderate dose gamma irradiation on the mechanical properties of bone and soft tissue allografts	Mixed femur	Mechanical testing machine (Instron), 30 kN Ioad cell, grooved platen, test at RT	Not reported in paper	Cylinder 14mm diameter, varied height (Cloward dowel)	Disinfected and defatted in Allowash, freeze dried, rehydrated in saline at RT for ≥ 60 mins	Not reported in paper	Not reported in paper	35 mm/min D	Not reported in paper
Bosisio et al ¹⁴⁷ (2007)	Apparent Young's modulus of human radius using inverse finite-element method	Mixed radius	Test machine (Instron), 100 kN Ioad cell	Not reported in paper	20 mm thick slices	Frozen at -20°C	Not reported in paper	Custom rotating platen	0.07%/sec; not reported in paper	Preload 10N, 10 cycles 8 mm/min to 0.3% strain
Finlay and Repo ¹⁴⁸ (1978)	Cartilage impact in vitro: Effect of bone and cement	Mixed tibia	Custom made drop tower	Not reported in paper	Cylinder 9 mm diameter, 1.4 mm to 2.2 mm height	Bone surface prepared with emery cloth and diamond grit paper	Not reported in paper	Stainless-steel holder and bone cement	1000/s D up to 20% strain	Not reported in paper
Jankowska- Kuchta et al ¹⁴⁹ (1994)	Comparison of mechanical properties of the bone investigated by compression test and holographic interferometry	Not reported in paper, tibia	Test machine (Instron)	Not reported in paper	Cylinder diameter not reported in paper, 25.2mm height	Not reported in paper	Not reported in paper	Not reported in paper	0.2 mm/min D	Not reported in paper

Table ii. (C	ontinued)
---------------------	------------

Author (year)	Title	Bone type/ origin	Machine setup	Strain measurement method	Sample dimensions	Sample preparation / storage	Compliance correction	Surface / boundary conditions	Strain or displacement rate / D/ND test	Preload / precondi- tioning
Keller ¹⁵⁰ (1994)	Predicting the compressive mechanical behaviour of	Mixed vertebras, femur	Servohydraulic machine (MTS)	Not reported in paper	Cubic 8 mm and 10 mm	Frozen at -30 °C, irrigated with 0.9%	Yes, 10 ⁻ ⁵ mmN ¹	Oiled stainless- steel platens	0.01 s ⁻¹ D	Preload 0.1 N, no preconditioning
MacNeil and Boyd ¹⁵¹ (2008)	Bone strength at the distal radius can be estimated from high-resolution peripheral quantitative computed tomography and the finite element method	Mixed radius	Testing machine (MTS), 10 kN load cell	Not reported in paper	9.1 mm thick sections	Frozen, thawed at RT	Not reported in paper	N due to specimen height restrictions	3%/s D	Preload of 100 N
Misch et al ^{15;} (1999)	² Mechanical properties of trabecular bone in the human mandible: Implications for dental implant treatment planning and surgical placement	Cancellous and cortical, mandible	Servohydraulic machine (Instron)	Not reported in paper	Cylinder 5 mm diameter 5 mm height	Frozen at -20°C	Not reported in paper	Tested side- constrained and free	0.01/s D	Not reported in paper
Nazarian et al ¹⁵³ (2008)	Bone volume fraction explains the variation in strength and stiffness of cancellous bone affected by metastatic cancer and osteoporosis	Bone type not reported in paper, vertebras, femur	Screwdriven testing system	Not reported in paper	Cylinder 2:1 ratio (~5.5 mm diameter, ~10 mm height)	Not reported in paper	Not reported in paper	Brass endcaps with cyanoacrylate glue	0.01% up to 20% strain	0.005/s strain for 7 cycles
Parsch et al ¹⁵⁴ (2008)	Mechanical stability of structured bone grafts from the anterior iliac crest	Cancellous and cortical Ilium	Universal testing machine (Frank Prufmaschinen), 10kN force plotter	Not reported in paper	Cylinder 6.4 mm diameter, 30 mm height or 8.5 mm diameter, 40 mm height	Not reported in paper	Not reported in paper	Not reported in paper	15 mm/min ND to decrease in force of 5 N	Not reported in paper
Rao et al ¹⁵⁵ (1993)	Biomechanical comparison of bone graft used in anterior spinal reconstruction: Freeze- dried demineralized femoral segments versus fresh fibular segments and tri-cortical iliac blocks in autopsy specimens	Mixed Iliac crest, fibula, femur	Hydraulic machine (MTS)	Not reported in paper	Not reported in paper	Water jet, 95% ethanol, ethyl ether, air dried, surface demineralized in 0.5-N hydrochloric acid for 24 hrs at 4°C	Not reported , in paper	Not reported in paper	0.5 mm/min D	Not reported in paper
Speirs et al ¹⁵⁶ (1999)	Biomechanical properties of sterilized human auditory ossicles.	Mixed ossicle	Biaxial testing machine (MTS)	Not reported in paper	Cylinder 1.5 mm diameter, 4 mm height	Frozen at -20°C	Repeatability tests on synthetic bone samples	Low viscosity glue on lower platen	0.05 mm/s Not reported in paper	Not reported in paper
Stein and Granik ¹⁵⁷ (1980)	Human vertebral bone: relation of strength, porosity, and mineralization to fluoride content	Bone type not reported in paper vertebras	Static tester (Instron)	Not reported in paper	Cylinder 1.25 cm diameter, 2.5 cm height	Not reported in paper	Not reported in paper	Not reported in paper	2.54 mm/minD	Not reported in paper

D/ND, destructive/non-destructive; MTS, materials testing machine; PMMA, polymethyl methacrylate; PBS, phosphate-buffered saline; LVDT, linear variable differential transformer; RT, room temperature

Table iii. Papers included in qualitative synthesis – studies using cortical bone specimens; articles are ordered according to method of strain measurement and secondly according to author (alphabetical order); where "Not reported in paper" is written, no information has been provided regarding that subject

Author (year)	Title	Bone type/ origin	Machine setup	Strain measurement method	Sample dimensions	Sample preparation / storage	Compliance correction	Surface / boundary conditions	Strain or displacement rate / D/ND test	Preload / precondi- tioning
Caler and Carter ¹⁵⁸ (1989)	Bone creep-fatigue damage accumulation	Cortical femur	Electrohydraulic system (MTS), Wood's metal grips, tested at 37°C	Extensometer (8 mm)	Cylinder 3 mm diameter, 8 mm height	Frozen airtight at -20°C	Not reported in paper	Not reported in paper	0.002/s to 0.009/s D	Not reported in paper
Cotton et al ¹⁵⁹ (2005)	Damage rate is a predictor of fatigue life and creep strain rate in tensile fatigue of human cortical bone samples	Cortical femur	Universal testing machine (Dartec), test at 37°C in Ringer's solution	Extensometer (12mm)	Parallelepiped 8 mm \times 8 mm \times 20 mm	Not reported in paper	Yes for grip compliance	Not reported in paper	20 cycles 2 Hz to 100 N D	Not reported in paper
Dong et al ¹⁶ (2012)	 Orientation dependence of progressive post-yield behavior of human cortical bone in compression 	Cortical femur	Mechanical testing machine (MTS)	Extensometer (3 mm)	Cylinder 3 mm diameter, 5 mm height	Stored in PBS solution, frozen at -20°C	Not reported in paper	Not reported in paper	0.001/s 11 cycles incremental compressive load and unloading D	Preload 20N
Hansen et al ¹⁶¹ (2008)	The effect of strain rate on the mechanical properties of human cortical bone	Cortical femur	Servohydraulic testing machine (Zwick), 5 kN load cell, Ringer's solution bath, test at 37°C	Extensometer (7mm)	Dog-bone- shaped, 3 mm to 2.4 mm	Frozen in Ringer's at -20°C, thawed before testing	Not reported in paper	Not reported in paper	Varied strain rates in range 0.14/s to 29/s D	Not reported in paper
Imbert et al ¹⁶² (2015)	Microstructure and compressive mechanical properties of cortical bone in children with osteogenesis imperfecta treated with bisphosphonates compared with healthy children	Cortical femur	Custom compression machine, 2.5 kN load cell	Extensometer	Parallelepiped 3 mm × 1.6 mm × 1.6 mm	Immersed in saline for scanning, frozen at -20°C	Not reported in paper	Not reported in paper	0.7 µm/s, loaded until 100N, then unloaded and loaded again to failure D	10N preload
Mirzaali et al ¹⁶³ (2015)	Mechanical properties of cortical bone and their relationships with age, gender, composition and microindentation properties in the elderly	Cortical femur	Biaxial servohydraulic testing machine (MTS), soaked in HBSS during testing, test at 23°C and 44% relative humidity	Bi-axial extensometer (Epsilon)	Dumb-bell shaped 3 mm diameter, 6.5 mm height, 30 mm total height	Frozen at -20°C, lubricated with ethylenglycol during lathing, rehydrated in HBSS for 12hrs at 4°C, then RT for >2hrs	Not reported in paper	Not reported in paper	~ 2.5 ¹⁰⁻⁴ s ⁻¹ D	3 load cycles up to 0.2% strain
Öhman et al ¹⁶⁴ (2008)	The effects of embalming using a 4% formalin solution on the compressive mechanical properties of human cortical bone	Cortical femur	Materials testing machine (MTS)	Extensometer (4.6 mm, MTS) fixed with acrylic resin	Cylinder 3 mm diameter, 20 mm height	Control group: Ringer's solution at RT for 24 hrs; group 2 to 4: 4% formalin for 48 hrs, 4 wks, or 8 wks then stored in Ringer's for 24 hrs, frozen between -19°C and 21°C	Not reported in paper	Not reported in paper	1.2 mm/s D	Not reported in paper
Öhman et al ¹⁶⁵ (2011)	Compressive behaviour of child and adult cortical bone	Cortical femur, tibia	Materials testing machine (MTS)	Extensometer (4.6 mm, MTS)	Cylinder diameter 3 mm, 18 mm height, or 2 mm diameter, 14 mm height	70% ethanol for at least 4 wks, rehydrated in Ringer's solution for 24hrs	Not reported in paper	PMMA and endcaps	0.1/s D until 5% reduction in free height	Not reported in paper
Wachter et al ¹⁶⁶ (2001)	Prediction of strength of cortical bone in vitro by microcomputed tomography	Cortical femur	Uniaxial materials testing machine (Zwick), test at RT, samples periodically moistened	Extensometer (Zwick)	Cylinder 3.6 mm diameter, 4.126 mm average height	Frozen at -20°C	Not reported in paper	Lubrication on specimen ends	0.6 mm/min ND	Preconditioning 3 cycles at 0.6 mm/min up to 50 N

Table iii. (Continued)
--------------	------------

Title

Author

(year)

Bone type/ origin **Machine setup**

Strain

method

Wachter et al ¹⁶⁷ (2002)	Correlation of bone mineral density with strength and microstructural parameters of cortical bone in vitro	Cortical femur	Materials testing machine (Zwick), test at RT, samples periodically moistened	Extensometer (Zwick)	Cylinder 3.6mm diameter, 4.1mm mean height	Frozen at -20°C	Not reported in paper	Lubricated contact areas	0.6 mm/min D	Preconditioning 3 cycles at 0.6 mm/min up to 50 N
Bargren et al ¹⁶⁸ (1974)	Mechanical properties of hydrated cortical bone	Cortical femur	Ebonite clamps, 100lb load cell (Tyco), test at 70°F	Strain gauges (0.05 x 0.08 inch)	Parallelepiped 1.5 mm × 1.5 mm × 20 mm	Air-dried < 5 mins during strain gauge application, rehydrated and stored in saline at 4°C, test repeated after air-drying	Not reported in paper	Not reported in paper	Cyclic up to 0.052/s ND (up to 0.002 or 20% strain of failure)	Not reported in paper
Reilly and Burstein ¹⁶⁹ (1975)	The elastic and ultimate properties of compact bone tissue	Cortical femur	Testing machine with loading pendulum, displacement cam	Strain gauge extensometer (2000 Ω)	Unclear	Frozen	Not reported in paper	Not reported in paper	0.02/s to 0.05/s not reported in paper	Not reported in paper
Vardakastani et al ¹⁷⁰ (2014)	Increased intra-cortical porosity reduces bone stiffness and strength in pediatric patients with osteogenesis imperfecta	Cortical femur, tibia	Uniaxial device (Raith), 1 kN load cell	DIC (Canon, custom DIC software)	Varied (1.3 mm to 4.3 mm diameter, 5.0 mm to 6.9 mm in height)	Frozen in saline at -18°C	Not reported in paper	Not reported in paper	0.001/s D	Preload 3 cycles to 20 N
Duchemin et al ¹⁷¹ (2008)	Prediction of mechanical properties of cortical bone by quantitative computed tomography	Cortical femur	Universal tension- compression system (Instron), dehydrated for 5 mins at RT	Optical CCD camera (Pulnix)	Parallelepiped $3 \text{ mm} \times 3 \text{ mm} \times 5 \text{ mm}$	Frozen at -20°C, thawed at 4°C in water for 1 hr to 3 hrs	Not reported in paper	Not reported in paper	0.04/min D	Preload of 12N, 3 cycles to max. load 50N
Bourgnon et al ¹⁷² (2014)	Impact of microscale properties measured by 50- MHz acoustic microscopy on mesoscale elastic and ultimate mechanical cortical bone properties	Cortical tibia	Materials testing machine, 10kN load cell	Not reported in paper	Parallelepiped 4 mm \times 3 mm \times 2 mm	Frozen at -20°C, embedded in cryo- embedding material (removed and thawed before testing in saline)	Not reported in paper	Pivoting upper platen, microscopy cameras for alignment	0.05/min or 0.02/s D	3 cycles between 0.12 MPA and 1.2 MPA
Cezayirlioglu et al ¹⁷³ (1985)	Anisotropic yield behavior of bone under combined axial force and torque	Cortical femur, tibia	Dynamic testing machine (Instron)	Not reported in paper	Cylinder 2.5 mm diameter, 16 mm height	Frozen	Not reported in paper	Not reported in paper	0.01-0.06/s	Not reported in paper
Evans and Wood ¹⁷⁴ (1976)	Mechanical properties and density of bone in a case of severe endemic fluorosis	Cortical radius	Testing machine (Instron), 22.68 kg load cell	Not reported in paper	Cylinder 3 mm diameter, 5 mm height	Not reported in paper	Not reported in paper	Not reported in paper	1.27 mm/min D	Not reported in paper
Jones et al ¹⁷⁵ (1993)	lliac crest bone graft. Osteotome versus saw	Cortical Iliac crest	Testing machine (Instron)	Not reported in paper	Horseshoe- shaped, 6 mm height, 12 mm depth	Frozen, thawed at RT	Not reported in paper	Not reported in paper	Not reported in paper D	Not reported in paper
Murdoch et al ¹⁷⁶ (2004)	Investigation into the material properties of beech wood and cortical bone	Cortical tibia	Servohydraulic machine, custom built test ring (Instron), irrigated with saline	Not reported in paper	Cylinder 4 mm diameter, 20 mm height	Frozen at -40°C, thawed at RT	Not reported in paper	Not reported in paper	0.5 mm/min D	Not reported in paper
Pattin et al ¹⁷⁷ (1996)	Cyclic mechanical property degradation during fatigue loading of cortical bone	Cortical femur	Servohydraulic machine (MTS), tested at 37°C	Not reported in paper	Cylinder 4 mm diameter, 3 mm height	Frozen at -20°C in wet paper towels	Not reported in paper	Not reported in paper	Not reported in paper; cyclic, 100 N ramp at 2 Hz	Not reported in paper

Sample

storage

measurement dimensions

Sample preparation / Compliance Surface /

correction boundary

conditions

Strain or

test

displacement

rate / D/ND

Preload /

precondi-

tioning

D/ND, destructive/non-destructive; MTS, materials testing machine; PBS, phosphate-buffered saline; HBSS, Hank's Balanced Salt Solution; DIC, Digital Image Correlation; CCD, charge-coupled device; PMMA, polymethyl methacrylate; RT, room temperature

References

- Augat P, Link T, Lang TF, et al. Anisotropy of the elastic modulus of trabecular bone specimens from different anatomical locations. *Med Eng Phys* 1998;20:124–131.
- Banse X, Sims TJ, Bailey AJ. Mechanical properties of adult vertebral cancellous bone: correlation with collagen intermolecular cross-links. J Bone Miner Res 2002;17:1621–1628.
- Burgers TA, Mason J, Niebur G, Ploeg HL. Compressive properties of trabecular bone in the distal femur. J Biomech 2008;41:1077–1085.
- 4. Cendre E, Mitton D, Roux J-P, Arlot ME, Duboeuf F, Burt-Pichat B, Rumelhart C, Peix G, Meunier PJ. High-resolution computed tomography for architectural characterization of human lumbar cancellous bone: relationships with histomorphometry and biomechanics. *Osteoporos Int* 1999;10:353–360.
- Ding M, Danielsen CC, Hvid I. Bone density does not reflect mechanical properties in early-stage arthrosis. Acta Orthop Scand 2001;72:181–185.
- Ducheyne P, Heymans L, Martens M, et al. The mechanical behaviour of intracondylar cancellous bone of the femur at different loading rates. J Biomech 1977;10:747–762.
- Frich LH, Jensen NC, Odgaard A, et al. Bone strength and material properties of the glenoid. J Shoulder Elb Surg 1997;6:97–104.
- Giesen EB, Ding M, Dalstra M, van Eijden TM. Reduced mechanical load decreases the density, stiffness, and strength of cancellous bone of the mandibular condyle. *Clin Biomech (Bristol, Avon)* 2003;18:358–363.
- Haddock SM, Yeh OC, Mummaneni PV, Rosenberg WS, Keaveny TM. Similarity in the fatigue behavior of trabecular bone across site and species. J Biomech 2004;37:181–187.
- Hans D, Wu C, Njeh CF, et al. Ultrasound velocity of trabecular cubes reflects mainly bone density and elasticity. *Calcif Tissue Int* 1999;64:18–23.
- Hernandez CJ, Lambers FM, Widjaja J, Chapa C, Rimnac CM. Quantitative relationships between microdamage and cancellous bone strength and stiffness. *Bone* 2014;66:205–213.
- Hvid I, Bentzen SM, Linde F, Mosekilde L, Pongsoipetch B. X-ray quantitative computed tomography: the relations to physical properties of proximal tibial trabecular bone specimens. *J Biomech* 1989;22:837–844.
- Jensen NC, Hvid I, Krøner K. Strength pattern of cancellous bone at the ankle joint. Eng Med 1988;17:71–76.
- Jensen NC, Madsen LP, Linde F. Topographical distribution of trabecular bone strength in the human os calcanei. J Biomech 1991;24:49–55.
- Karim L, Vashishth D. Heterogeneous glycation of cancellous bone and its association with bone quality and fragility. *PLoS One* 2012;7:e35047.
- Keaveny TM, Pinilla TP, Crawford RP, Kopperdahl DL, Lou A. Systematic and random errors in compression testing of trabecular bone. J Orthop Res 1997;15:101–110.
- Keaveny TM, Wachtel EF, Kopperdahl DL. Mechanical behavior of human trabecular bone after overloading. J Orthop Res 1999;17:346–353.
- Kopperdahl DL, Keaveny TM. Yield strain behavior of trabecular bone. J Biomech 1998;31:601–608.
- **19. Linde F, Hvid I.** Stiffness behaviour of trabecular bone specimens. *J Biomech* 1987;20:83–89.
- Linde F, Sørensen HCF. The effect of different storage methods on the mechanical properties of trabecular bone. J Biomech 1993;26:1249–1252.
- Linde F, Hvid I, Madsen F. The effect of specimen geometry on the mechanical behaviour of trabecular bone specimens. *J Biomech* 1992;25:359–368.
- Linde F, Nørgaard P, Hvid I, Odgaard A, Søballe K. Mechanical properties of trabecular bone. Dependency on strain rate. J Biomech 1991;24:803–809.
- Majumdar S, Kothari M, Augat P, et al. High-resolution magnetic resonance imaging: three-dimensional trabecular bone architecture and biomechanical properties. *Bone* 1998;22:445–454.
- 24. Majumdar S, Lin J, Link T, et al. Fractal analysis of radiographs: assessment of trabecular bone structure and prediction of elastic modulus and strength. *Med Phys* 1999;26:1330–1340.
- Martens M, Van Audekercke R, Delport P, De Meester P, Mulier JC. The mechanical characteristics of cancellous bone at the upper femoral region. *J Biomech* 1983;16:971–983.
- 26. Matsuura M, Eckstein F, Lochmüller E-M, Zysset PK. The role of fabric in the quasi-static compressive mechanical properties of human trabecular bone from various anatomical locations. *Biomech Model Mechanobiol* 2008;7:27–42.
- Morgan EF, Keaveny TM. Dependence of yield strain of human trabecular bone on anatomic site. J Biomech 2001;34:569–577.
- Morgan EF, Yeh OC, Chang WC, Keaveny TM. Nonlinear behavior of trabecular bone at small strains. J Biomech Eng 2001;123:1–9.

- Morgan EF, Yeh OC, Keaveny TM. Damage in trabecular bone at small strains. Eur J Morphol 2005;42:13–21.
- O'Mahony AM, Williams JL, Katz JO, Spencer P. Anisotropic elastic properties of cancellous bone from a human edentulous mandible. *Clin Oral Implants Res* 2000;11:415–421.
- Odgaard A, Hvid I, Linde F. Compressive axial strain distributions in cancellous bone specimens. J Biomech 1989;22:829–835.
- Odgaard A, Linde F. The underestimation of Young's modulus in compressive testing of cancellous bone specimens. *J Biomech* 1991;24:691–698.
- Öhman C, Baleani M, Perilli E, et al. Mechanical testing of cancellous bone from the femoral head: experimental errors due to off-axis measurements. J Biomech 2007;40:2426–2433.
- 34. Ojanen X, Tanska P, Malo MKH, et al. Tissue viscoelasticity is related to tissue composition but may not fully predict the apparent-level viscoelasticity in human trabecular bone An experimental and finite element study. J Biomech 2017;65:96–105.
- Ouyang J, Yang GT, Wu WZ, Zhu QA, Zhong SZ. Biomechanical characteristics of human trabecular bone. Clin Biomech (Bristol, Avon) 1997;12:522–524.
- 36. Ouyang X, Lin JC, Link T, et al. Biomechanical strength versus spinal trabecular bone structure assessed using contact radiography and texture analysis. *Proc SPIE - Int Soc Opt Eng* 1997;3034:165–174.
- Ouyang X, Majumdar S, Link TM, et al. Morphometric texture analysis of spinal trabecular bone structure assessed using orthogonal radiographic projections. *Med Phys* 1998;25:2037–2045.
- Perilli E, Baleani M, Öhman C, et al. Dependence of mechanical compressive strength on local variations in microarchitecture in cancellous bone of proximal human femur. J Biomech 2008;41:438–446.
- Rapillard L, Charlebois M, Zysset PK. Compressive fatigue behavior of human vertebral trabecular bone. J Biomech 2006;39:2133–2139.
- 40. Schwiedrzik J, Gross T, Bina M, et al. Experimental validation of a nonlinear μFE model based on cohesive-frictional plasticity for trabecular bone. Int J Numer Methods Biomed Eng 2016;32:e02739.
- Schwiedrzik JJ, Kaudela K-H, Burner U, Zysset PK. Fabric-mechanical property relationships of trabecular bone allografts are altered by supercritical CO₂ treatment and gamma sterilization. *Bone* 2011;48:1370–1377.
- 42. Stauber M, Rapillard L, van Lenthe GH, Zysset P, Müller R. Importance of individual rods and plates in the assessment of bone quality and their contribution to bone stiffness. *J Bone Miner Res* 2006;21:586–595.
- 43. Stoppie N, Van Cleynenbreugel T, Wevers M, Vander Sloten J, Naert I. The validation of a compression testing method for cancellous human jawbone by highresolution finite element modeling. Int J Oral Maxillofac Implants 2007;22:436–445.
- Tang SY, Zeenath U, Vashishth D. Effects of non-enzymatic glycation on cancellous bone fragility. *Bone* 2007;40:1144–1151.
- 45. van Lenthe GH, Stauber M, Müller R. Specimen-specific beam models for fast and accurate prediction of human trabecular bone mechanical properties. *Bone* 2006;39:1182–1189.
- 46. Wachter NJ, Augat P, Mentzel M, et al. Predictive value of bone mineral density and morphology determined by peripheral quantitative computed tomography for cancellous bone strength of the proximal femur. *Bone* 2001;28:133–139.
- Wu Z, Laneve AJ, Niebur GL. In vivo microdamage is an indicator of susceptibility to initiation and propagation of microdamage in human femoral trabecular bone. *Bone* 2013;55:208–215.
- Aiyangar AK, Vivanco J, Au AG, et al. Dependence of anisotropy of human lumbar vertebral trabecular bone on quantitative computed tomography-based apparent density. J Biomech Eng 2014;136:091003.
- 49. Brown TD, Way ME, Ferguson AB Jr. Mechanical characteristics of bone in femoral capital aseptic necrosis. *Clin Orthop Relat Res* 1981;156:240–247.
- Ding M, Dalstra M, Danielsen CC, et al. Age variations in the properties of human tibial trabecular bone. J Bone Joint Surg [Br] 1997;79-B:995–1002.
- Giesen EB, Ding M, Dalstra M, van Eijden TM. Mechanical properties of cancellous bone in the human mandibular condyle are anisotropic. J Biomech 2001;34:799–803.
- Linde F, Hvid I. The effect of constraint on the mechanical behaviour of trabecular bone specimens. J Biomech 1989;22:485–490.
- Røhl L, Larsen E, Linde F, Odgaard A, Jørgensen J. Tensile and compressive properties of cancellous bone. *J Biomech* 1991;24:1143–1149.
- Yahia LH, Drouin G, Duval P. A methodology for mechanical measurements of technical constants of trabecular bone. *Eng Med* 1988;17:169–173.
- Zhou B, Liu XS, Wang J, et al. Dependence of mechanical properties of trabecular bone on plate-rod microstructure determined by individual trabecula segmentation (ITS). J Biomech 2014;47:702–708.

- 56. Cyganik Ł, Binkowski M, Kokot G, et al. Prediction of Young's modulus of trabeculae in microscale using macro-scale's relationships between bone density and mechanical properties. J Mech Behav Biomed Mater 2014;36:120–134.
- 57. Cyganik L, Binkowski M, Popik P, et al. Experimental verification of the relationships between Young's modulus and bone density using DIC. In: Kleiber M, Burczynski T, Wilde K, Goski J, eds. Advances in Mechanics: Theoretical, Computational and Interdisciplinary Issues: Proceedings of the 3rd Polish Congress of Mechanics (PCM) and 21st International Conference on Computer Methods in Mechanics (CMM). Gdansk: CRC Press, 2016:133-136.
- 58. Cyganik Ł, Binkowski M, Kokot G, et al. Microscale's relationship between Young's modulus and tissue density. Prediction of displacements. *Comput Methods Biomech Biomed Engin* 2017;20:1658-1668.
- Kalouche I, Crépin J, Abdelmoumen S, et al. Mechanical properties of glenoid cancellous bone. *Clin Biomech (Bristol, Avon)* 2010;25:292–298.
- Sugita H, Oka M, Toguchida J, et al. Anisotropy of osteoporotic cancellous bone. Bone 1999;24:513–516.
- Deligianni DD, Maris A, Missirlis YF. Stress relaxation behaviour of trabecular bone specimens. J Biomech 1994;27:1469–1476.
- Rincón-Kohli L, Zysset PK. Multi-axial mechanical properties of human trabecular bone. *Biomech Model Mechanobiol* 2009;8:195–208.
- 63. Townsend PR, Raux P, Rose RM, Miegel RE, Radin EL. The distribution and anisotropy of the stiffness of cancellous bone in the human patella. J Biomech 1975;8:363-367.
- 64. Yamamoto E, Paul Crawford R, Chan DD, Keaveny TM. Development of residual strains in human vertebral trabecular bone after prolonged static and cyclic loading at low load levels. J Biomech 2006;39:1812–1818.
- 65. Follet H, Boivin G, Rumelhart C, Meunier PJ. The degree of mineralization is a determinant of bone strength: a study on human calcanei. *Bone* 2004;34:783–789.
- 66. Follet H, Bruyère-Garnier K, Peyrin F, et al. Relationship between compressive properties of human os calcis cancellous bone and microarchitecture assessed from 2D and 3D synchrotron microtomography. *Bone* 2005;36:340-351.
- Follet H, Peyrin F, Vidal-Salle E, et al. Intrinsic mechanical properties of trabecular calcaneus determined by finite-element models using 3D synchrotron microtomography. *J Biomech* 2007;40:2174–2183.
- 68. Follet H, Viguet-Carrin S, Burt-Pichat B, et al. Effects of preexisting microdamage, collagen cross-links, degree of mineralization, age, and architecture on compressive mechanical properties of elderly human vertebral trabecular bone. J Orthop Res 2011;29:481–488.
- 69. Erivan R, Villatte G, Cueff R, Boisgard S, Descamps BS. Rehydration improves the ductility of dry bone allografts. *Cell Tissue Bank* 2017;18:307-312.
- Anderson MJ, Keyak JH, Skinner HB. Compressive mechanical properties of human cancellous bone after gamma irradiation. J Bone Joint Surg [Am] 1992;74-A:747-752.
- Badiei A, Bottema MJ, Fazzalari NL. Influence of orthogonal overload on human vertebral trabecular bone mechanical properties. J Bone Miner Res 2007;22:1690–1699.
- Banse X, Delloye C, Cornu O, Bourgois R. Comparative left-right mechanical testing of cancellous bone from normal femoral heads. J Biomech 1996;29:1247–1253.
- 73. Baroud G, Nemes J, Ferguson SJ, Steffen T. Material changes in osteoporotic human cancellous bone following infiltration with acrylic bone cement for a vertebral cement augmentation. *Comput Methods Biomech Biomed Engin* 2003;6:133–139.
- Bentzen SM, Hvid I, Jørgensen J. Mechanical strength of tibial trabecular bone evaluated by X-ray computed tomography. J Biomech 1987;20:743-752.
- 75. Bevill G, Eswaran SK, Farahmand F, Keaveny TM. The influence of boundary conditions and loading mode on high-resolution finite element-computed trabecular tissue properties. *Bone* 2009;44:573–578.
- Birnbaum K, Sindelar R, Gaertner JR, Wirtz DC. Material properties of trabecular bone structures. Surg Radiol Anat 2001;23:399–407.
- Bollerslev J, Mosekilde L, Nielsen HK, Mosekilde L. Biomechanical competence of iliac crest trabecular bone in autosomal dominant osteopetrosis type l. *Bone* 1989:10:159–164.
- Bone MC, Dold P, Flohr M, et al. The influence of the strength of bone on the deformation of acetabular shells: a laboratory experiment in cadavers. *Bone Joint J* 2015:97–B:473–477.
- 79. Brown TD, Ferguson AB Jr. Mechanical property distributions in the cancellous bone of the human proximal femur. Acta Orthop Scand 1980;51:429–437.
- Brown SJ, Pollintine P, Powell DE, Davie MWJ, Sharp CA. Regional differences in mechanical and material properties of femoral head cancellous bone in health and osteoarthritis. *Calcif Tissue Int* 2002;71:227–234.
- Carter DR, Schwab GH, Spengler DM. Tensile fracture of cancellous bone. Acta Orthop 1980;51:733–741.

- Carter DR, Hayes WC. The compressive behavior of bone as a two-phase porous structure. J Bone Joint Surg [Am] 1977;59-A:954–962.
- 83. Cesar R, Leivas TP, Augusto C, et al. Axial compressive strength of human vertebrae trabecular bones classified as normal, osteopenic and osteoporotic by quantitative ultrasonometry of calcaneus. *Res Biomed Eng* 2017;33:91–96.
- Charlebois M, Pretterklieber M, Zysset PK. The role of fabric in the large strain compressive behavior of human trabecular bone. J Biomech Eng 2010;132:121006.
- 85. Chevalier Y, Pahr D, Allmer H, Charlebois M, Zysset P. Validation of a voxelbased FE method for prediction of the uniaxial apparent modulus of human trabecular bone using macroscopic mechanical tests and nanoindentation. J Biomech 2007;40:3333–3340.
- Christensen P, Larsen HS, Lian R, Vang PS. Mechanical testing of the trabecular bone of the knee in knee alloplasty. Ugeskr Laeger 1981;143:3127–3130. (in Danish)
- Du C, Ma H, Ruo M, et al. An experimental study on the biomechanical properties of the cancellous bones of distal femur. *Biomed Mater Eng* 2006;16:215–222.
- Ciarallo A, Barralet J, Tanzer M, Kremer R. An approach to compare the quality of cancellous bone from the femoral necks of healthy and osteoporotic patients through compression testing and microcomputed tomography imaging. *Mcgill J Med* 2006;9:102–107.
- Ciarelli MJ, Goldstein SA, Kuhn JL, Cody DD, Brown MB. Evaluation of orthogonal mechanical properties and density of human trabecular bone from the major metaphyseal regions with materials testing and computed tomography. J Orthop Res 1991;9:674–682.
- Cody DD, McCubbrey DA, Divine GW, Gross GJ, Goldstein SA. Predictive value of proximal femoral bone densitometry in determining local orthogonal material properties. J Biomech 1996;29:753–761.
- Conrad EU, Ericksen DP, Tencer AF, Strong DM, Mackenzie AP. The effects of freeze-drying and rehydration on cancellous bone. *Clin Orthop Relat Res* 1993;290:279–284.
- 92. Cornu O, Boquet J, Nonclercq O, et al. Synergetic effect of freeze-drying and gamma irradiation on the mechanical properties of human cancellous bone. *Cell Tissue Bank* 2011;12:281–288.
- Ding M, Danielsen CC, Hvid I, Overgaard S. Three-dimensional microarchitecture of adolescent cancellous bone. *Bone* 2012;51:953–960.
- 94. Ding M, Odgaard A, Linde F, Hvid I. Age-related variations in the microstructure of human tibial cancellous bone. J Orthop Res 2002;20:615–621.
- 95. Fazzalari NL, Forwood MR, Smith K, Manthey BA, Herreen P. Assessment of cancellous bone quality in severe osteoarthrosis: bone mineral density, mechanics, and microdamage. *Bone* 1998;22:381–388.
- 96. Goldstein SA, Wilson DL, Sonstegard DA, Matthews LS. The mechanical properties of human tibial trabecular bone as a function of metaphyseal location. J Biomech 1983;16:965–969.
- Goulet RW, Goldstein SA, Ciarelli MJ, et al. The relationship between the structural and orthogonal compressive properties of trabecular bone. J Biomech 1994;27:375-389.
- 98. Grieb TA, Forng R-Y, Stafford RE, et al. Effective use of optimized, high-dose (50 kGy) gamma irradiation for pathogen inactivation of human bone allografts. *Biomaterials* 2005;26:2033–2042.
- 99. Han S, Medige J, Faran K, Feng Z, Ziv I. The ability of quantitative ultrasound to predict the mechanical properties of trabecular bone under different strain rates. *Med Eng Phys* 1997;19:742–747.
- 100. Hvid I. Cancellous bone at the knee: a comparison of two methods of strength measurement. Arch Orthop Trauma Surg 1985;104:211–217.
- Hvid I, Jensen J. Cancellous bone strength at the proximal human tibia. Eng Med 1984;13:21–25.
- 102. Hvid I, Christensen P, Søondergaard J, Christensen PB, Larsen CG. Compressive strength of tibial cancellous bone: Instron and osteopenetrometer measurements in an autopsy material. Acta Orthop Scand 1983;54:819–825.
- 103. Keyak JH, Lee IY, Nath DS, Skinner HB. Postfailure compressive behavior of tibial trabecular bone in three anatomic directions. J Biomed Mater Res 1996;31:373–378.
- 104. Lambers FM, Bouman AR, Tkachenko EV, Keaveny TM, Hernandez CJ. The effects of tensile-compressive loading mode and microarchitecture on microdamage in human vertebral cancellous bone. *J Biomech* 2014;47:3605–3612.
- 105. Leichter I, Bivas A, Margulies JY, Roman I, Simkin A. Acoustic emission from trabecular bone during mechanical testing: the effect of osteoporosis and osteoarthritis. *Proc Inst Mech Eng Part H* 1990;204:123–127.
- 106. Díaz León JL, Lesso Arroyo R, Rodríguez Castro R, López Vázquez A. Mechanical characterization of bone allografts, enriched with mesenchymal cells. *Int J Des Nat Ecodynamics* 2016;11:722–730. https://www.witpress.com/elibrary/ dne-volumes/11/4/1282 (date last accessed 13 August 2018).

- 107. Li Z-C, Dai L-Y, Jiang L-S, Qiu S. Difference in subchondral cancellous bone between postmenopausal women with hip osteoarthritis and osteoporotic fracture: implication for fatigue microdamage, bone microarchitecture, and biomechanical properties. Arthritis Bheum 2012;64:3955–3962.
- 108. Linde F, Pongsoipetch B, Frich LH, Hvid I. Three-axial strain controlled testing applied to bone specimens from the proximal tibial epiphysis. J Biomech 1990;23:1167–1172.
- 109. Linde F, Hvid I, Jensen NC. Material properties of cancellous bone in repetitive axial loading. *Eng Med* 1985;14:173–177.
- 110. Linde F, Gøthgen CB, Hvid I, Pongsoipetch B. Mechanical properties of trabecular bone by a non-destructive compression testing approach. *Eng Med* 1988;17:23–29.
- Liu JF, Shim VPW, Lee PVS. Quasi-static compressive and tensile tests on cancellous bone in human cervical spine. *Conf Proc Soc Exp Mech Ser* 2013;5:109– 118. https://link.springer.com/chapter/10.1007/978-1-4614-4427-5_16 (date last accessed 13 August 2018).
- 112. Lv H, Zhang L, Yang F, et al. Comparison of microstructural and mechanical properties of trabeculae in femoral head from osteoporosis patients with and without cartilage lesions: a case-control study. *BMC Musculoskelet Disord* 2015;16:72.
- Martin H, Werner J, Andresen R, Schober H-C, Schmitz K-P. Noninvasive assessment of stiffness and failure load of human vertebrae from CT-data. *Biomed Tech (Berl)* 1998;43:82–88.
- 114. Mosekilde L, Mosekilde L, Danielsen CC. Biomechanical competence of vertebral trabecular bone in relation to ash density and age in normal individuals. *Bone* 1987:8:79–85.
- Nazarian A, Muller J, Zurakowski D, Müller R, Snyder BD. Densitometric, morphometric and mechanical distributions in the human proximal femur. *J Biomech* 2007;40:2573–2579.
- Nicholson PHF, Cheng XG, Lowet G, et al. Structural and material mechanical properties of human vertebral cancellous bone. *Med Eng Phys* 1997;19:729–737.
- 117. Nicholson PHF, Strelitzki R. On the prediction of Young's modulus in calcaneal cancellous bone by ultrasonic bulk and bar velocity measurements. *Clin Rheumatol* 1999;18:10–16.
- 118. Njeh CF, Kuo CW, Langton CM, Atrah HI, Boivin CM. Prediction of human femoral bone strength using ultrasound velocity and BMD: an in vitro study. *Osteoporos Int* 1997;7:471–477.
- 119. Ozan F, Pekedis M, Koyuncu Ş, et al. Micro-computed tomography and mechanical evaluation of trabecular bone structure in osteopenic and osteoporotic fractures. J Orthop Surg (Hong Kong) 2017;25:2309499017692718.
- 120. Portero-Muzy NR, Chavassieux PM, Mitton D, et al. Euler(strut.cavity), a new histomorphometric parameter of connectivity reflects bone strength and speed of sound in trabecular bone from human os calcis. *Calcif Tissue Int* 2007;81:92–98.
- 121. Pothuaud L, Van Rietbergen B, Mosekilde L, et al. Combination of topological parameters and bone volume fraction better predicts the mechanical properties of trabecular bone. J Biomech 2002;35:1091–1099.
- 122. Poukalova M, Yakacki CM, Guldberg RE, et al. Pullout strength of suture anchors: effect of mechanical properties of trabecular bone. J Biomech 2010;43:1138–1145.
- 123. Poumarat G, Squire P, Dabonneville M. Comparison of mechanical properties of human, bovine bone and a new processed bone xenograft. *Biomaterials* 1993;14:337–340.
- 124. Rauh J, Despang F, Baas J, et al. Comparative biomechanical and microstructural analysis of native versus peracetic acid-ethanol treated cancellous bone graft. *Biomed Res Int* 2014;2014:784702.
- 125. Rho JY, Flaitz D, Swarnakar V, Acharya RS. The characterization of broadband ultrasound attenuation and fractal analysis by biomechanical properties. *Bone* 1997;20:497–504.
- 126. Rodrigues AM, Caetano-Lopes J, Vale AC, et al. Low osteocalcin/collagen type I bone gene expression ratio is associated with hip fragility fractures. *Bone* 2012;51:981–989.
- 127. Seo SH, Lee J, Park IH. Efficacy of dual energy x-ray absorptiometry for evaluation of biomechanical properties: bone mineral density and actual bone strength. J Bone Metab 2014;21:205–212.
- 128. Shim VPW, Yang LM, Liu JF, Lee VS. Characterisation of the dynamic compressive mechanical properties of cancellous bone from the human cervical spine. Int J Impact Eng 2006;32:525–540.
- 129. Sierpowska J, Hakulinen M, Töyräs J, et al. Prediction of mechanical properties of human trabecular bone by electrical measurements. *Physiol Meas* 2005;26:S119–S131.
- 130. Steinhauser E, Diehl P, Hadaller M, et al. Biomechanical investigation of the effect of high hydrostatic pressure treatment on the mechanical properties of human bone. J Biomed Mater Res B Appl Biomater 2006;76:130–135.

- Stoppie N, Pattijn V, Van Cleynenbreugel T, et al. Structural and radiological parameters for the characterization of jawbone. *Clin Oral Implants Res* 2006;17:124– 133.
- 132. Sun S-S, Ma H-L, Liu C-L, et al. Difference in femoral head and neck material properties between osteoarthritis and osteoporosis. *Clin Biomech (Bristol, Avon)* 2008:23:S39–S47.
- 133. Thurner PJ, Erickson B, Turner P, et al. The effect of NaF in vitro on the mechanical and material properties of trabecular and cortical bone. Adv Mater 2009;21:451–457.
- 134. Vale AC, Aleixo IP, Lúcio M, et al. At the moment of occurrence of a fragility hip fracture, men have higher mechanical properties values in comparison with women. BMC Musculoskelet Disord 2013;14:295.
- 135. Vale AC, Pereira MFC, Maurício A, et al. Micro-computed tomography and compressive characterization of trabecular bone. *Colloids Surf A Physicochem Eng Asp* 2013;438:199–205.
- 136. Vastel L, Meunier A, Siney H, Sedel L, Courpied J-P. Effect of different sterilization processing methods on the mechanical properties of human cancellous bone allografts. *Biomaterials* 2004:25:2105–2110.
- Wells JG, Rawlings RD. Acoustic emission and mechanical properties of trabecular bone. *Biomaterials* 1985;6:218–224.
- 138. Zhang Z-M, Li Z-C, Jiang L-S, Jiang S-D, Dai L-Y. Micro-CT and mechanical evaluation of subchondral trabecular bone structure between postmenopausal women with osteoarthritis and osteoporosis. *Osteoporos Int* 2010;21:1383–1390.
- 139. Zhu M, Keller TS, Spengler DM. Effects of specimen load-bearing and free surface layers on the compressive mechanical properties of cellular materials. J Biomech 1994;27:57–66.
- 140. Bayraktar HH, Morgan EF, Niebur GL, et al. Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue. J Biomech 2004;37:27–35.
- 141. Samuel J, Park JS, Almer J, Wang X. Effect of water on nanomechanics of bone is different between tension and compression. J Mech Behav Biomed Mater 2016;57:128–138.
- 142. McElhaney JH, Fogle JL, Melvin JW, et al. Mechanical properties on cranial bone. J Biomech 1970;3:495-511.
- 143. Reilly DT, Burstein AH, Frankel VH. The elastic modulus for bone. J Biomech 1974;7:271-275.
- 144. El Masri F, Sapin de Brosses E, Rhissassi K, Skalli W, Mitton D. Apparent Young's modulus of vertebral cortico-cancellous bone specimens. *Comput Methods Biomech Biomed Engin* 2012;15:23–28.
- 145. Li J, Huang S, Tang Y, Wang X, Pan T. Biomechanical analysis of the posterior bony column of the lumbar spine. J Orthop Surg Res 2017;12:132.
- 146. Balsly CR, Cotter AT, Williams LA, et al. Effect of low dose and moderate dose gamma irradiation on the mechanical properties of bone and soft tissue allografts. *Cell Tissue Bank* 2008;9:289–298.
- 147. Bosisio MR, Talmant M, Skalli W, Laugier P, Mitton D. Apparent Young's modulus of human radius using inverse finite-element method. J Biomech 2007;40:2022–2028.
- 148. Finlay JB, Repo RU. Cartilage impact in vitro: effect of bone and cement. J Biomech 1978;11:379–388.
- 149. Jankowska-Kuchta E, Kasprzak H, Fechner G. Comparison of mechanical properties of the bone investigated by compression test and holographic interferometry. Proc SPIE - Mic Hol Interf Bio 1994;2083:319-321. https:// www.spiedigitallibrary.org/conference-proceedings-of-spie/2083/0000/ Comparison-of-mechanical-properties-of-the-bone-investigated-bycompression/10.1117/12.167405.short (date last accessed 13 August 2018).
- 150. Keller TS. Predicting the compressive mechanical behavior of bone. J Biomech 1994;27:1159–1168.
- 151. Macneil JA, Boyd SK. Bone strength at the distal radius can be estimated from high-resolution peripheral quantitative computed tomography and the finite element method. *Bone* 2008;42:1203–1213.
- 152. Misch CE, Qu Z, Bidez MW. Mechanical properties of trabecular bone in the human mandible: implications for dental implant treatment planning and surgical placement. J Oral Maxillofac Surg 1999;57:700–706.
- 153. Nazarian A, Von Stechow D, Zurakowski D, Müller R, Snyder BD. Bone volume fraction explains the variation in strength and stiffness of cancellous bone affected by metastatic cancer and osteoporosis. *Calcif Tissue Int* 2008;83:368–379.
- 154. Parsch D, Breitwieser T, Breusch SJ. Mechanical stability of structured bone grafts from the anterior iliac crest. *Clin Biomech (Bristol, Avon)* 2008;23:955–960.
- 155. Rao S, McKellop H, Chao D, et al. Biomechanical comparison of bone graft used in anterior spinal reconstruction. Freeze-dried demineralized femoral segments

versus fresh fibular segments and tricortical iliac blocks in autopsy specimens. *Clin Orthop Relat Res* 1993;289:131–135.

- 156. Speirs AD, Hotz MA, Oxland TR, Häusler R, Nolte L-P. Biomechanical properties of sterilized human auditory ossicles. J Biomech 1999;32:485–491.
- 157. Stein ID, Granik G. Human vertebral bone: relation of strength, porosity, and mineralization to fluoride content. *Calcif Tissue Int* 1980;32:189–194.
- 158. Caler WE, Carter DR. Bone creep-fatigue damage accumulation. J Biomech 1989;22:625–635.
- 159. Cotton JR, Winwood K, Zioupos P, Taylor M. Damage rate is a predictor of fatigue life and creep strain rate in tensile fatigue of human cortical bone samples. J Biomech Eng 2005;127:213–219.
- 160. Dong XN, Acuna RL, Luo Q, Wang X. Orientation dependence of progressive postyield behavior of human cortical bone in compression. J Biomech 2012;45:2829– 2834.
- 161. Hansen U, Zioupos P, Simpson R, Currey JD, Hynd D. The effect of strain rate on the mechanical properties of human cortical bone. J Biomech Eng 2008;130:011011.
- 162. Imbert L, Aurégan J-C, Pernelle K, Hoc T. Microstructure and compressive mechanical properties of cortical bone in children with osteogenesis imperfecta treated with bisphosphonates compared with healthy children. J Mech Behav Biomed Mater 2015;46:261–270.
- 163. Mirzaali MJ, Schwiedrzik JJ, Thaiwichai S, et al. Mechanical properties of cortical bone and their relationships with age, gender, composition and microindentation properties in the elderly. *Bone* 2015;93:196–211.
- 164. Öhman C, Dall'Ara E, Baleani M, Van Sint Jan S, Viceconti M. The effects of embalming using a 4% formalin solution on the compressive mechanical properties of human cortical bone. *Clin Biomech (Bristol, Avon)* 2008;23:1294–1298.
- 165. Öhman C, Baleani M, Pani C, et al. Compressive behaviour of child and adult cortical bone. *Bone* 2011;49:769–776.

- 166. Wachter NJ, Augat P, Krischak GD, et al. Prediction of strength of cortical bone in vitro by microcomputed tomography. *Clin Biomech (Bristol, Avon)* 2001;16:252–256.
- 167. Wachter NJ, Krischak GD, Mentzel M, et al. Correlation of bone mineral density with strength and microstructural parameters of cortical bone in vitro. *Bone* 2002;31:90–95.
- 168. Bargren JH, Andrew C, Bassett L, Gjelsvik A. Mechanical properties of hydrated cortical bone. J Biomech 1974;7:239-245.
- 169. Reilly DT, Burstein AH. The elastic and ultimate properties of compact bone tissue. J Biomech 1975;8:393-405.
- 170. Vardakastani V, Saletti D, Skalli W, et al. Increased intra-cortical porosity reduces bone stiffness and strength in pediatric patients with osteogenesis imperfecta. *Bone* 2014;69:61–67.
- 171. Duchemin L, Bousson V, Raossanaly C, et al. Prediction of mechanical properties of cortical bone by quantitative computed tomography. *Med Eng Phys* 2008;30:321–328.
- 172. Bourgnon A, Sitzer A, Chabraborty A, et al. Impact of microscale properties measured by 50-MHz acoustic microscopy on mesoscale elastic and ultimate mechanical cortical bone properties. *IEEE Int Ultrason Symp IUS*, 2014;636–638.
- 173. Cezayirlioglu H, Bahniuk E, Davy DT, Heiple KG. Anisotropic yield behavior of bone under combined axial force and torque. J Biomech 1985;18:61–69.
- Evans FG, Wood JL. Mechanical properties and density of bone in a case of severe endemic fluorosis. Acta Orthop Scand 1976;47:489–495.
- 175. Jones AA, Dougherty PJ, Sharkey NA, Benson DR. Iliac crest bone graft. Osteotome versus saw. Spine 1993;18(Suppl):2048–2052.
- 176. Murdoch AH, Mathias KJ, Shepherd DET. Investigation into the material properties of beech wood and cortical bone. *Biomed Mater Eng* 2004;14:1–4.
- 177. Pattin CA, Caler WE, Carter DR. Cyclic mechanical property degradation during fatigue loading of cortical bone. J Biomech 1996;29:69–79.