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Article focus
�� To provide a comprehensive review on 

the experimental technique of compres-
sion testing of bone.

�� To provide recommendations on how 
best to perform compression testing of 
bone in the future.

Key messages
�� There is a great deal of inter-study varia-

tion in the experimental technique for 
compression testing of bone.

�� Factors such as specimen preparation, 
specimen geometry, testing configura-
tion, and strain rate can affect the meas-
urement of bone stiffness.

�� Further studies looking specifically at 
aspects of the compression testing 
technique are required in order to 
establish a standardized method for 
bone.

Strengths and limitations
�� This review followed guidelines sug-

gested by the Cochrane and Preferred 
Reporting Items for Systematic Reviews 
and Meta-Analyses organizations.

�� This review of compression testing can 
help to develop a standardized experi-
mental bone testing technique in the 
future.

Standardizing compression testing  
for measuring the stiffness of  
human bone

Objectives
The ability to determine human bone stiffness is of clinical relevance in many fields, includ-
ing bone quality assessment and orthopaedic prosthesis design. Stiffness can be measured 
using compression testing, an experimental technique commonly used to test bone speci-
mens in vitro. This systematic review aims to determine how best to perform compression 
testing of human bone.

Methods
A keyword search of all English language articles up until December 2017 of compression 
testing of bone was undertaken in Medline, Embase, PubMed, and Scopus databases. Stud-
ies using bulk tissue, animal tissue, whole bone, or testing techniques other than compres-
sion testing were excluded.

Results
A total of 4712 abstracts were retrieved, with 177 papers included in the analysis; 20 studies 
directly analyzed the compression testing technique to improve the accuracy of testing. Sev-
eral influencing factors should be considered when testing bone samples in compression. 
These include the method of data analysis, specimen storage, specimen preparation, testing 
configuration, and loading protocol.

Conclusion
Compression testing is a widely used technique for measuring the stiffness of bone but there 
is a great deal of inter-study variation in experimental techniques across the literature. Based 
on best evidence from the literature, suggestions for bone compression testing are made in 
this review, although further studies are needed to establish standardized bone testing tech-
niques in order to increase the comparability and reliability of bone stiffness studies.
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Introduction
Stiffness can be defined as the resistance of a structure or 
material to deformation.1 This property is of great impor-
tance for understanding the relationship between the 
structure and function of bone, and is clinically relevant 
in areas such as orthopaedic prosthesis design and char-
acterization of bone properties across anatomical loca-
tions.2-5 Thus, the ability to determine bone stiffness in an 
accurate and efficient way is crucial for enabling clinicians 
to understand the effect of factors such as disease, age, 
and medical intervention on bone quality.

Compression testing is a widely used experimental 
technique for determining the mechanical properties of 
bulk tissue specimens excised from cortical or cancellous 
regions of bone.6-10 It is relatively straightforward to per-
form, and is capable of producing quick measurements 
of apparent elastic modulus and other properties, such as 
ultimate strength.11 Other bulk tissue testing techniques 
for determining stiffness include three-point bending, 
tensile testing, and torsional testing.12,13 The apparent 
properties obtained from these tests are independent of 
the whole bone geometry, but include effects of porosity 
and anisotropy arising from osteon or trabecular orienta-
tion.14 Currently, there is wide variation in the literature 
about how compression testing of bone is performed, 
with no benchmark protocol. Differences between stud-
ies may be due to differing processes of extraction, 
machining, and preserving the bone samples.15 They 
may also be due to the method used to measure the 
strain in the bone as well as the strain rate used during 
testing.16

Currently, strict standards are universally established 
for the experimental testing of engineering materials. 
However, this is not the case for compression testing of 
bone specimens, where standardized material testing 
methods cannot always be applied due to restrictions 
related to using biological tissue. These include the het-
erogeneity and finite size of bone specimens, difficulties 
with gripping bone surfaces, as well as the relatively low 
loads that can be applied. Subsequently, there are varia-
tions in testing methodology and specimen preparation 
across the literature, and direct comparison of studies is 
difficult.15 Therefore, this paper aims to review systemati-
cally the literature surrounding compression testing of 
human bone and its reliability for measuring stiffness. 
Specifically, this systematic review aims to determine 
how best to perform compression testing of human bone 
in order to help develop a standardized testing technique 
for future studies.

Materials and Methods
A systematic review of published literature up until 
December 2017 relating to compression testing of 
human bone was undertaken using Medline, Embase, 
PubMed, and Scopus databases according to the 

Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses (PRISMA) guidelines.17 This was consid-
ered representative of the literature. A combination of the 
search terms, “compression test*” OR “compressive 
test*” OR “axial compression” AND “Bone*” OR “cortical 
bone*” OR “compact bone*” AND “stiffness” OR “rigid-
ity” OR “elasticity” OR “elastic* modulus” OR “Young’s 
modulus” were used. Exclusion criteria included studies 
using non-human tissue, those that did not undergo 
compression testing (e.g. tensile testing or finite element 
modelling), non-bulk tissue testing (e.g. whole bone 
specimens), non-accessible or non-English papers, and 
those that did not measure stiffness directly from the 
compression test. Two authors (SZ and MA) were respon-
sible for independent article extraction and inclusion. 
Any disagreements were resolved with discussion as rec-
ommended by Cochrane Collaboration guidelines.18

Results
Search results.  Figure 1 shows the study extraction flow-
chart, according to PRISMA guidelines. A total of 4712 
abstracts were retrieved. Following duplicate removal 
and abstract screening, a total of 807 eligible full-text 
articles remained. After review of these manuscripts, 177 
papers were deemed to fit the inclusion criteria for com-
pression testing of human bone and were consequently 
included in this review.
Qualitative assessment. O verall, there was a great deal 
of variation across the literature in terms of testing pro-
tocol. Supplementary tables i, ii, and iii show details 
of the testing protocol and experimental setup used 
in each study, with articles separated according to the 
type of bone used (cancellous, cortical, or mixed speci-
mens). If the method of strain measurement was not 
specifically reported in the article, it was assumed that 
it was measured via the machine crosshead displace-
ment. A total of 20 studies directly analyzed aspects 
of the compression testing technique,7,16,19-36 and pro-
vided recommendations for improving the accuracy 
and precision of future testing. A brief overview of the 
studies retrieved is provided in the results section of 
this review. The analysis of individual studies is in the 
discussion section.
Bone specimen preparation and storage.  It was found that 
the most common method for storing and preserving 
bone specimens prior to testing was freezing and subse-
quent thawing before testing.5,6,8,10,16,20-22,24-31,33-139 The 
temperatures used varied across the literature and sam-
ples were commonly frozen in physiological (0.9%) saline 
solutions. Other solutions used for storage, or for thawing 
samples, include ethanol,5,22,32,70-72,140-145 Ringer’s solu-
tion,16,31,42,43,57,60,74,80,83,84,105,142,144,146 embalming fluid 
(commonly formalin-based solutions),31,102,118,141,147-152 
and phosphate-buffered saline (PBS) solution.65,115,124,135,153 
Some studies freeze-dried the samples.21,59,154-156
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During the testing process, fresh wet specimens were 
most commonly used. Six studies used dried specimens 
in the compression test.33,51,135,138,157,158 The majority of 
studies tested bone specimens in unconfined conditions, 
but some tested in confined conditions using confine-
ment chambers,22,98,159,160 a steel annulus,52 or polytetra-
fluoroethylene (PTFE) tape.130

Testing setup. T he standard compression test tra-
ditionally involves compressing the bone specimen 
between two fixed parallel stainless-steel platens or 
anvils (Fig. 2). Certain studies used a combination of 
a fixed platen paired with an adjustable, rotating pla
ten.38,43-45,69,101,104,107,113,118,119,146,157,161-163 A few stud-
ies used variations of the standard machine setup such 
as use of grooved platens,154 custom-built compres-
sion machines,82,122,132,164,165 and drop tower159 or 
hand-loaded testing machines.141 Some studies tested 
bone specimens in water baths filled with saline solu-
tion.53,66,70,72,87,107,122,166,167 Other solutions in which 
samples were immersed during testing included Ringer’s 
solution,168 Hank’s Balanced Salt Solution,166 and PBS 
with protease inhibitors.132

Many studies used additional measures to improve 
accuracy of the testing technique, including the use of 
mineral oil to lubricate the specimen-platen inter-
face22,24,26,34,61,88,103,127-129,133,147,148,162 and embedding the 
specimens in brass, aluminium alloy, or stainless-steel 
endcaps.4,8,19,28,29,34-36,39,40,49,73,76,77,90,99,113,118,119,131-133, 

142,144,153,159,164,167,169 Some studies used latex,33,38,69,132 
Teflon plates,20,104 or poly(methyl methacrylate) (PMMA) 
cement22,27,32,166,170,171 on the specimen ends to help sta-
bilize the severed trabecular free ends. Other studies 
glued specimens with cyanoacrylate or epoxy adhesive 
to the platen.51,55,116,172-174

Strain measurement. T he most common method for strain 
measurement was using the machine crosshead displace-
ment. The following studies applied machine compliance 
correction when using this method of strain measure-
ment.34,37,46,47,51,52,57,75,88,160,166,168 Only one study37 gave 
specific details of the compliance correction algorithm. 
Other studies used extensometers3,8,16,22,24,26-32,35,40,47,49, 

50,53,60-62,65,68,76,77,81-84,90,97,103-105,111,112,119,127,129, 

131-133,135,136,142,144,147,148,168,170,171,173-181 and electric resis-
tance wire strain gauges33,133,158,160 to measure strain. A 
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Fig. 1

Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow diagram of study selection.
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few studies used Digital Image Correlation (DIC), an opti-
cal, non-contact technique.30,67,86,120,125,140,145,182 It was 
found that the majority of studies used physiological183 
strain rates in the range of 0.005 s-1 to 0.08 s-1, with a few 
testing at substantially higher strain rates.16,26,68,159,161

Discussion
This systematic review set out to determine how best to 
perform compression testing of human bone, in order to 
suggest a standardized method for determining bone 
stiffness to be used in future studies. A total of 177 articles 
were retrieved which help to answer this question. The 
retrieved articles have been analyzed and, where possi-
ble, recommendations for compression testing have 
been made.

Determination of stiffness. T he load-displacement curve 
and the resultant stress-strain curve can be divided into 
elastic and plastic deformation regions. Within the elas-
tic region, the structure undergoes deformation, which 
returns to its original shape after the load is released.9 
The pre-yield region of the stress-strain curve is usually 
linear and is considered, often incorrectly, to be elastic. 
The slope of the linear portion is taken by many research-
ers as the elastic modulus or Young’s modulus (Fig. 3). 
However, bone is a complex, anisotropic, and hetero-
geneous material that does not behave as a purely elas-
tic material. Thus, it has been shown to demonstrate 
non-linear behaviour, particularly at the lower portion 
of the pre-yield elastic region of the stress-strain curve, 
likely due to factors such as irregularities in the specimen 

Compressing upper
platen

Bone

Stationary lower
platen

Fig. 2a Fig. 2b

Images showing a) standard platens compression testing setup of a bone specimen, and b) a close-up schematic of a bone specimen placed between two 
polished platens.
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Fig. 3

Stress-strain graph of a typical compression test with corresponding mechanical parameters measured.



528Standardizing compression testing for measuring the stiffness of human bone  

vol. 7, No. 8, August 2018 

surface layers.25,29,34 Morgan et al29 thus used a second-
order polynomial fit for strain ranges of up to 0.2% when 
calculating the slope to minimize systematic errors. For 
strain ranges up to 0.25% and 0.3%, they used third and 
fourth order polynomial fits, respectively.

Strictly speaking, the slope of the linear portion of the 
stress-strain curve is not the Young’s modulus of the 
bone specimen because this deformation is not purely 
elastic. Bones have complex hierarchical structures and 
contain many defects, including pores. Some degree of 
plastic deformation is present, even at a relatively low 
compressive stress or strain. An appropriate term used to 
describe the slope of the initial linear part is the apparent 
modulus, which is a useful stiffness parameter for com-
parison purposes.184 However, this parameter simply 
represents the ratio between stress and strain, and should 
not be confused with the elastic or Young’s modulus of 
the material. Many papers in the literature reported the 
apparent modulus as Young’s modulus.3-5,7,10,16,19,20-25, 

27,29,30-33,37,40-42,45,47,48,50-53,55,57-71,73-84,86-100,102-124, 

126-137,139,140,142-148,150,151,153-159,161-164,166-168,176-182,185-195 
This likely explains why many reported Young’s modulus 
values are generally lower than expected, and with a 
wide range of variance.

The Young’s modulus of bone specimens ideally 
should be obtained by an intermittent loading-unloading 
procedure. Specifically, the stress is increased at a low 
strain rate to a level somewhat below the yield point, i.e. 
before the stress-strain curve deviates from the linear por-
tion. It is then released and immediately increased again, 
forming a loading-unloading cycle.196 The unloading 
curve is steeper than the linear portion of the normal 
stress-strain curve, and its gradient can be used to gener-
ate a value for Young’s modulus.65 However, the com-
plexity of bone material and variation between specimen 
and specimen may mean that this technique (which is 
commonly used in testing porous metals196) is not feasi-
ble. Thus, we suggest for pragmatic purposes that the 
technique outlined by Keaveny et al36 is used, whereby 
modulus is determined from a best fit line to the steepest 
portion of the stress-strain curve over a range of 0.2% 
strain. This is still technically measuring apparent modu-
lus, but at a strain below 0.2% the amount of plastic 
deformation is likely to be small. Thus, this method may 
provide a value close to the true elastic modulus. 
However, care should be taken when interpreting the 
validity of data taken from studies using this method of 
calculation in the absence of endcaps or extensometers. 
This is because there is often a non-linear toe-in region 
present on the loading curve over this strain range if end-
caps are not used.

All future studies should report the correct terminol-
ogy, particularly where absolute values for modulus are 
concerned.

Other factors contributing to the variance in the litera-
ture regarding bone stiffness include patient demographic 

or health status, sample location, orientation, and testing 
conditions. It can be misleading to provide an authorita-
tive reference range for moduli, as in reality this range 
would differ between studies due to these numerous 
aforementioned compounding factors. But as a guide, for 
wet, cortical femoral bone (the most commonly tested), 
one can expect the stiffness to fall approximately in the 
range of 15 GPa to 20 GPa.8,65,112,142 This range should be 
interpreted accordingly with the test conditions and sam-
ple origin. Lower values should be anticipated when 
using cancellous samples,197 when compressing in the 
transverse direction rather than the longitudinal,65 when 
testing metaphyseal bone, rather than diaphyseal bone,198 
in a patient group of older age,61 or when extensometers 
and endcaps have not been used (i.e. structural end 
effects are not accounted for).36 Higher values may be 
anticipated when testing dry samples135,158 or at higher 
strain rates.16 These factors will be discussed in more 
detail in the subsequent sections of this paper.

Stiffness of animal bone is outside the scope of this 
review, but may be of interest to researchers. For exam-
ple, where bovine bone is commonly used as a test mate-
rial. For further discussion regarding other mechanical 
testing techniques and non-human bone, we recom-
mend the broad review by Novitskaya et al197 as a good 
starting point.
Sample preparation.  By far the most common method 
of specimen storage was shown to be freezing of wet 
bone specimens. Linde and Sørensen22 have shown that 
this method has minimal effect on stiffness. Therefore, 
freezing in physiological saline should be the standard 
method of storage as it is easily accessible and facilitates 
consistency and comparability between studies.

Although the majority of studies tested wet speci-
mens, six studies tested dried specimens.33,51,135,138,157,158 
Testing dry specimens may help facilitate coupling to the 
metal platens and hold the specimen in place. However, 
Carter et al51 found that specimens that had been dried 
then rewetted gave significantly greater moduli values 
than fresh specimens. This is consistent with studies by 
Bargren et al158 and Samuel et al,135 who found that bone 
specimens that had been dried had increased stiffness 
compared with the hydrated specimens. Therefore, stud-
ies using fresh specimens should not be compared with 
those using dry. When testing fresh specimens, care 
should be taken to ensure that the surface layers of the 
specimens do not dry out.

Bone can be considered a composite structure, with a 
solid phase (mineralized bone tissue) and a fluid phase 
(i.e. bone marrow, vessels, nerves, blood, and interstitial 
fluid).52 Thus, properties will change depending on 
whether or not specimens are tested with marrow in situ 
or ex situ,22,52 as well as depending on the hydration state 
of the tissue.135,199 Several studies have shown that defat-
ting and removal of bone marrow from bone specimens 
prior to testing has significant effects on the mechanical 
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properties measured.3,22,33,52 The storage method before 
testing is therefore important. It is recommended to freeze 
samples in saline with marrow intact. It not only has a 
minimal effect on the mechanical properties, but also is a 
widely accessible and commonly used technique.
Orientation and anatomical location.  When compres-
sion testing anisotropic materials such as bone,200 care 
must be taken to control and specify orientation and axis 
of loading of the specimen. Not only is this important 
in studies wishing to replicate in vivo conditions, but it 
also helps ensure comparability between studies. Care 
must be taken to avoid misalignment of the principal 
material axes with the anatomical axes during the speci-
men machining process. This is because off-axis angu-
lation can lead to errors in the mechanical properties 
measured, as demonstrated experimentally by Öhman 
et al.32 Schwiedrzik et al173 used bone specimens that 
were extracted perpendicular to the main trabecular ori-
entation rather than parallel, which explained the lower 
yield stress values obtained in their study. Morgan and 
Keaveny99 quantified the degree of misalignment in their 
study to enable them to calculate the average estimated 
percentage error in their modulus measurements. They 
used microCT scanning, as did Perilli et al,144 to deter-
mine any off-axis angulation of the specimens. Bourgnon 
et al45 used a microscopy camera during their experiment 
to ensure correct alignment before testing. Although 
microCT and microscopy cameras can offer more accu-
rate alignment information, they are not always available 
and can be time-consuming to use. Researchers should 
use cameras or visual inspection for checking orientation.

The orientation considerations can cause constraint 
in the sample extraction procedure. For example, in two 
studies by Wachter et al,127,129 the thin cortical shell in 
the donor patient’s femur only allowed for small cortical 
specimens to be extracted in one direction. If resources 
allow, it would be beneficial to take radiographs of 
specimens to ascertain the trabecular direction, and 
subsequently ensure correct orientation prior to test-
ing.32,133,179,201 It is recommended that the misalignment 
angle is measured and considered when analyzing the 
outcomes.

Due to the nature of human tissue collection, it may 
be difficult to determine the orientation and location of 
biopsied specimens relative to the donor’s host bone. 
The most commonly sampled locations throughout the 
relevant literature were the femur, followed by the verte-
bras and tibia. Variation in results due to anatomical vari-
ation12 can be minimized by sampling from the same 
precise anatomical site. Lv et al156 designed a personal-
ized mould for each femoral head used in their study to 
ensure that biopsies were extracted from precisely the 
same anatomical location in each patient. While this 
method confers a higher level of precision and ensures 
standardized sample extraction, it is both time- and 

resource-consuming. It is hardly practical when a large 
number of samples are involved, and may not be as 
reproducible in other locations as the femoral head. In 
most cases, the use of anatomical landmarks to deter-
mine specimen extraction location would be sufficient.
Specimen geometry.  In compression testing, the speci-
mens are typically cylindrical or parallelepiped. A few 
studies used cross-sectional slices ranging from 8 mm 
to 20 mm in height.39,44,59,94 This is not recommended 
because the height-to-width ratio is too small, and it is 
also difficult to give an accurate measurement of the 
cross-sectional area. Thus, stiffness derived from stud-
ies using non-uniform specimen geometries should be 
interpreted with caution. Studies have found that modu-
lus decreases with decreasing specimen cross-sectional 
area and length.24,34 Linde et al24 suggest a 6.5 mm cube 
or cylinder of 7.5 mm diameter and 6.5 mm length, and 
Keaveny et al202 recommended the use of cylindrical 
specimens over cubic in order to minimize errors related 
to Poisson’s ratio. However, this error is likely to be small. 
As long as an appropriate aspect ratio is maintained, 
geometry of the cross section, either cylindrical or cubic, 
should not matter much.

It is appreciated that it would be difficult to set a stand-
ardized specimen size for testing as this ultimately 
depends on the machine setup and volume of tissue 
available. However, given the literature and with guid-
ance from current testing standards for similar engineer-
ing materials, the following aspects should be considered 
when selecting specimen geometry:

-	T he aspect ratio (i.e. the height to width ratio of the 
specimen). This should be between 1 and 2 to 
avoid buckling of the specimen during the com-
pression test and thus maintain axial load 
application.201,203

-	 Cylindrical cross-section specimens should be 
used where possible. A 2:1 cylinder of minimum 
5 mm diameter, as suggested by Keaveny et al,202 
would be sufficient to satisfy the continuum 
assumption.

-	T he method of strain measurement. In general, 
larger specimens should be used if using machine 
crosshead motion for strain measurement to mini-
mize the effect of the structurally compromised free 
surface layers. Zhu et al34 recommended a mini-
mum height of 10 mm and cross-sectional area of 
100 mm2. If this cannot be achieved, regional strain 
measurement should be carried out.

Machining.  It is important to maintain a standardized 
process for machining the top, bottom, and side surfaces 
of the bone specimen. This may be one of the most time-
consuming steps of sample preparation but is impera-
tive for ensuring a maximally ideal stress field and state 
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during compression testing. Both ends of the specimen 
should be parallel to each other, with these surfaces 
also lying perfectly perpendicular to the long axis of the 
specimen.141

Irrigated, low-speed, low-force cutting devices should 
be used to prevent overheating of the specimens, and 
thus reduce thermal and mechanical damage.9,204 
Diamond is a material that has been shown to be resistant 
to wear205 and is biocompatible.206 Thus, where possible, 
this should be used for tool materials. If cylindrical speci-
mens are used, these are commonly cut using coring 
tools, by milling, or by lathing.9 Keaveny et al207 found 
that lathing their cylindrical specimens produced clean 
cut sides, and no additional damage compared with cor-
ing the specimens. Some studies recommend machining 
the samples while frozen to prevent damage,42,68 
although there is little supporting evidence for this 
method. No matter how careful, any process of machin-
ing a heterogeneous tissue may lead to potential dam-
age. We want to highlight a key step in the specimen 
preparation process, which is to inspect visually the spec-
imen surfaces for any damage or unacceptable irregulari-
ties before proceeding to the compression test phase.
Testing configuration.  It is possible to test bone speci-
mens in confined or unconfined conditions. The latter 
allows the escape of bone marrow during testing, which 
reduces the influence of viscoelasticity. Confined testing 
not only keeps bone marrow in place but also restricts 
lateral deformation during testing. A study by Linde and 
Hvid27 looking at the effect of side constraint found that 
bone specimens tested in confined conditions produce 
increased values for stiffness compared with results 
obtained from the same specimen tested in unconfined 
conditions. Although, arguably, it is more representative 
to test specimens in constrained conditions, it is clearly 
difficult during testing to replicate the degree of con-
straint conferred by neighbouring tissue in vivo. It is thus 
recommended that, for measuring properties of the bone 
alone, unconfined testing remain the standard at least to 
facilitate comparability. This study highlights one of the 
potential limitations of ex situ techniques such as com-
pression testing, where the results may have limited use 
clinically.
Platen setup.  With traditional platens compression test-
ing, the specimen can be placed between two fixed par-
allel platens, or a combination of a fixed platen paired 
with an adjustable platen. This adjustable platen, usu-
ally pivoted on a ball bearing, is often used to reduce 
the effects of specimen non-parallelism and misalign-
ment. This would enable full engagement between 
the platen surface and specimen ends, and encourages 
evenly distributed loading during compression.69,77 
Overall, with regard to the testing apparatus, the type 
of machine is unlikely to be a critical factor in relation 
to the testing results so long as the effects of specimen 

misalignment, friction, and slippage can be avoided or 
minimized.
Precautional measures (to improve accuracy). T he sur-
face of the compression platens can be polished and/or 
lubricated with mineral oil to minimize friction between 
the platen surface and the specimen surface. This can 
help reduce the influence of “end effects” and allow for 
free transverse expansion of the specimen (Poisson’s 
effect).15,34,36,103 The disadvantage of this, however, is 
highlighted in preliminary studies by Linde et al26 where 
the presence of an oil film on the platen resulted in a sig-
nificant load signal before the specimen had any contact 
with the compression column. Similarly, the use of latex, 
Teflon, PMMA cement, or glue to secure the specimens 
directly to the platen should generally be avoided, if pos-
sible, as it is unclear whether these additions have an 
effect on the mechanical properties measured.208

Endcaps may be made of brass, aluminium alloy, or 
stainless steel, and specimens are commonly secured 
within them using PMMA cement, cyanoacrylate glue or 
latex rubber. These may help to eliminate the effects of 
specimen slippage, while also providing a suitable homo-
geneous surface for the attachment of extensometers. 
This confers the advantage of increased precision.36 
Furthermore, the process of embedding the specimens 
into the endcaps can introduce off-axis tilting or uncon-
trolled preloading.

Keaveny et al36 published a paper describing several 
systematic and random errors present when compres-
sion testing trabecular bone samples. They reported a 
systematic underestimation error in the range of 20% to 
40% for compression testing of trabecular specimens. 
They suggested a testing technique aimed at minimizing 
end effects, which involves embedding the bone speci-
men in endcaps and using an extensometer to sample in 
four directions around the specimen. This study shows 
the beneficial effect of using an external method of strain 
measurement, and future studies should use this endcap-
extensometer technique where possible.

One such case where it may not be possible to use 
extensometers is with small specimens. Speirs et al116 
describe this issue in their study of the effect of steriliza-
tion techniques on ear ossicles. The naturally small size of 
these bones did not allow for use of endcaps or exten-
someters. They used data obtained from pre-testing on 
synthetic bone specimens of the same size and under 
similar conditions to help estimate the reproducibility of 
their testing technique. However, we suggest that, in 
these cases, alternative methods of strain measurement 
such as strain gauges or linear variable differential trans-
formers (LVDTs) can be used to similar effect.
Temperature and environment. T he temperature and 
testing environment can be controlled through use of 
temperature-controlled baths filled with solution (most 
commonly saline). These baths are commonly used to 
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regulate the testing temperature to 37°C to emulate in 
vivo testing conditions. For most studies, the use of saline 
baths is not necessary, provided that the specimen is not 
left to dry out on the platen, and the test is carried out 
within a reasonable time frame.

It is appreciated that the machine setup and environ-
mental condition depend not only on the objectives of 
the study but also on the resources available to the 
researcher. Thus, standardization is impractical in this 
aspect. We suggest that, where possible, any testing 
method used should be validated against an appropriate 
material standard with known properties (e.g. rigid plas-
tic) in order to identify and quantify any systematic error 
present.14 This will enable adjustment to the testing tech-
nique to assure accuracy prior to testing.
Testing procedure.  Preconditioning or preloading proto-
cols are cyclic loading tests applied before the intended 
test is carried out. These are used to achieve a steady vis-
coelastic state and ensure that zero-strain during testing is 
reproducible by defining the zero-strain at a set preload.7 
Preloading and preconditioning also help to ensure that 
the entire end surface of the bone specimen is uniformly 
in contact with the platen before testing. These multiple 
compression cycles may also be used to check for any 
substantial plastic damage to the specimens by identify-
ing reductions in modulus between the cycles, provided 
that these cycles are within the elastic range.36

Preconditioning should be carried out if measures have 
not been taken to eliminate end effects.207 A cyclic, dis-
placement-controlled preconditioning protocol of low 
strain levels in the range of 0.3% to 0.5%7,207 can be used 
to minimize irreversible damage to the specimens. Note 
that this threshold level of preload will differ between spec-
imens and so, for more precision, a protocol where the 
specimen is cyclically loaded and unloaded until linearity 
may be used. This can be used to identify the zero-point, 
i.e. the effective starting point of zero-strain, where the 
specimen can then be subsequently reloaded for the test.36

Strain measurement. T here are a wide variety of tech-
niques for measuring strain, including machine crosshead 
displacement, strain extensometers, and strain gauges. 
With the traditional platens testing technique, strain can 
be easily measured via the motion of the test machine 
crosshead. This method works on the assumption that 
the displacement of the platen is identical to the defor-
mation of the specimen. When measuring the relatively 
small deformations of bone specimens, this assumption 
introduces error due to deflection of the entire load frame 
of the machine when under stress. This effect is related to 
the stiffness of the test machine apparatus and is known 
as “machine compliance”.209 Thus, studies that use this 
method of strain measurement should correct for the 
machine compliance to ensure that they are measuring 
the strain of the specimen alone. The machine compli-
ance may be determined directly by loading the system 

without a specimen or with a standard uniform material 
specimen such as steel with known properties. Augat et 
al3 reported systematic measurement errors in their study 
due to the measurement of strain across the machine 
platens, and not the specimen itself.

Although this method may be adequate, other meth-
ods of strain measurement with higher accuracy are nec-
essary to obtain test values within an acceptable limit. 
Strain is often greater at boundary regions close to the 
platen than in the middle of cut specimens due to the 
severed struts of trabeculae on the outer surface. This can 
lead to overestimation of the average strain across the 
specimen, and thus a consequent underestimation of 
modulus.15,30,34 To minimize these end effects, strain is 
best measured at the middle region of the specimen. This 
can be achieved using an extensometer, which may be of 
a contact or non-contact type. Keaveny et al36 recom-
mended an extensometer technique that sampled defor-
mation data from all around the specimen, thus 
accounting for any potential architectural heterogeneity 
within the bone specimen. However, there are limitations 
to measuring strain using extensometers in such bone 
studies. First, the use of extensometers requires large 
specimen sizes due to technical difficulties with securing 
the arms of the extensometer on the surface of small or 
irregularly shaped specimens. The typically slippery and 
smooth surfaces of fresh bone specimens further exacer-
bate these fixation difficulties. Several studies reported 
errors stemming from slippage of the extensometer, par-
ticularly when dealing with wet bone specimens.77,142 
Cotton et al168 reported that nearly 20% of their samples 
tested had unreliable extensometer readings, apparently 
due to slippage. There may have also been damage to 
specimens through transverse preload as a result of 
attaching contact-type extensometers.29

When strain gauges are suitably attached to the test 
material, the deformation of the strain gauge is assumed 
to be identical to the deformation of the material. The 
deformation of the strain gauge leads to changes in elec-
trical resistance that allow digital calculation of strain.210 
These can be used singularly for measuring strain in one 
direction or in the form of rosette strain gauges to meas-
ure strain multi-directionally. However, installation of 
these devices can be difficult when dealing with bone 
material in terms of specimen surface preparation and 
choice of adhesive. A common source of error lies in the 
bonding of the gauge to the test specimen and insuffi-
cient specimen surface preparation.210 By technical 
standards, the specimen surface should be chemically 
clean and degreased, appropriately rough, and of appro-
priate pH.211 As imagined, this is difficult or inappropriate 
when testing organic material such as fresh bone.

An innovative technique for strain measurement is 
digital image correlation (DIC), an optical, non-contact 
technique for measuring displacement. The specimen 
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surface is usually painted or sprayed to produce a high-
contrast speckle pattern. DIC works by tracking the pixels 
of serial digital photographs taken of the painted surface 

at different stages of deformation. Here, the DIC system is 
capable of taking the influences of end effects into 
account and has the potential for full-field strain 

Measurement of stiffness by compression testing

Is damage
or misalignment

tested?

Discard specimen.
Yes

Yes

No

No

Is sample
to be immediately

tested?

Use test machine apparatus with load cell of
sufficient range.

Embed specimen into endcaps.

Extensometer attached to
endcaps (preferred technique).

Strain gauge attached 
directly to bone.

Apply axial load to specimen at strain rate of < 0.1 s-1.

Report apparent modulus, including donor demographics, bone type, and test conditions.

Carry out preconditioning in strain range of 0.3% to 0.5%.

Determine Apparent Modulus from maximum slope of
linear portion of loading curve, over constant range of

0.2% strain.

Other method such as
LVDT or DIC.

Use external strain measurement.

Extract representative donor bone samples according
to test objectives. Ensure orientation of sample is parallel

to trabecular orientation.

Store specimen with
marrow intact, freeze in
phosphate buffered saline-
soaked gauze. Thaw at room
temperature before testing.
Keep number of freeze-thaw
cycles to a minimum.

Core or lathe sample into final test specimen dimensions
using low-speed, irrigated tools. Cylinder or

parallelepiped. Minimum diameter/side length 5 mm.
Aspect ratio 1:2. Ensure surfaces are smooth and parallel

and specimen ends are flat.

Fig. 4

Recommended testing protocol for measurement of bone modulus. DIC, Digital Image Correlation; LVDT, Linear Variable Differential Transformer.
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measurement.210 However, measurements are limited to 
the accuracy and resolution of the DIC system and 
authors highlighted limitations with using acrylic paint 
for surface preparation.140 For example, paint that had 
penetrated into the pores could have been carrying 
applied loads or obstructing marrow flow, and thus 
could affect mechanical behaviour.140

Each method of strain measurement has its advan-
tages and disadvantages and, ultimately, the method 
used should depend on the objective of the study. Where 
relative values are sought, traditional crosshead displace-
ment measurement of strain is sufficient and is quick and 
simple to implement. It also places fewest restrictions on 
the specimen, with no need for large-sized specimens or 
surface preparation to facilitate attachment of extensom-
eters or strain gauges. Although the effect of machine 
compliance may be negligible when testing relatively 
compliant orthopaedic samples, it is strongly recom-
mended that investigators still correct for this error. If 
absolute values are of interest in the study, then exten-
someters should be used to improve the accuracy of 
strain measurement as discussed above. If localized 
strain changes are of interest to the researcher, strain 
gauges can be used. Digital image correlation is a 
method that would be most useful in studies interested 
in full-field strain measurements (e.g. whole bone frac-
ture analysis).212 Further studies using DIC on ex vivo 
bone samples are required before reliability of this 
method can be assessed.
Strain rate. S train rate is strain change (deformation) 
per unit of time. Testing strain rate is an important fac-
tor to consider when measuring the mechanical prop-
erties of biological materials. The strain rate used may 
vary depending on the nature of the experiment, i.e. 
within normal physiological range or higher strain rates 
for simulating trauma and impact.16 Physiological strain 
rates are considered to be within the range of 0.005 s-1 
and 0.08 s-1, and the majority of studies use rates that fall 
within this range.183 The studies which tested at substan-
tially higher strain rates16,26,68,159,161 were studying high-
impact situations.

Wet bone exhibits “viscoelastic” or strain rate-dependent 
behaviour due to the complex, multi-phase, porous struc-
ture of bone where fluid present in the bone matrix effec-
tively acts as a “shock absorber”.135,213 Internal friction 
between the fluid phase, i.e. bone marrow, and the solid 
phase, i.e. mineral matrix, leads to losses of elastic 
energy.14,52 This viscoelastic effect has been shown to 
have the greatest influence at higher strain rates (greater 
than 10 s-1) in confined boundary conditions where the 
marrow cannot move freely.26,52 Studies by Wells and 
Rawlings130 and Linde et al26 showed that the stiffness of 
trabecular bone increased as the testing strain rate 
increased. Hansen et al16 have experimentally demon-
strated a similar effect when testing cortical bone. They 

tested at moderate to high strain rates, as this was more 
representative of the strain rates encountered during 
traumatic events that resulted in bone fractures.

Due to viscoelasticity, the most accurate modulus val-
ues are obtained at very low strain rates, i.e. rates that are 
considered “quasistatic”.25 It is suggested that a critical 
strain rate exists at which moduli values increase, 
although there is no definitive consensus in the litera-
ture.16,161 Clearly, compressing specimens at infinitely 
low strain rates would be impractical and inappropriate. 
At excessively slow loading durations over long periods 
of time, materials will suffer from creep deformation, a 
phenomenon which will also affect the measured modu-
lus. Thus, we recommend a testing strain rate range of 
between 0.001 s-1 and 0.1 s-1 to be used where strain rate 
is not the studied factor. A strain rate within this range 
should be sufficient to minimize creep whilst still low 
enough to be considered quasistatic.214 Again, research-
ers should bear in mind their objectives as testing at these 
low strain rates may not be representative of the dynamic 
or physiological strains present in vivo,183 and many of 
the studies in the literature purposefully test at moderate 
or high strain rates. All studies should report the strain 
rate used to facilitate comparability.

In conclusion, variations in methodology for compres-
sion testing of bone across the literature due to lack of 
standardization in testing technique have made compa-
rability and interpretation of current studies difficult.15 
This paper aimed to review the literature systematically in 
order to determine how best to perform compression 
testing of human bone to help develop a standardized 
testing technique for future studies. The American Society 
for Testing Materials (ASTM) designations for compres-
sive testing provide a current source of guidance for 
mechanical testing technique, but adaptations for use 
with bone tissue are necessary.203

We recommend that the testing protocol shown in 
Figure 4 should be used as a guide in conducting compres-
sion tests of human bone to obtain stiffness values. The fol-
lowing key factors in compression testing should be noted:

-	O rientation during extraction of the specimen 
must be carefully considered to ensure correct 
anatomical alignment.

-	S pecimen geometry is important, and cylindrical 
bone cores with aspect ratios less than two are 
preferred.

-	U se of fresh, wet, and unconfined specimens 
stored in physiological saline is recommended.

-	T he method of strain measurement should be 
carefully considered, taking into account the size 
and quality of the specimens.

-	T he strain range and fit used to determine the 
apparent modulus must be carefully considered 
due to the non-linear and plastic nature of bone.
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-	S train rates of less than 0.1 s-1 should be used with 
preconditioning cycles.

-	 Care should be taken with the testing configura-
tion, with measures taken to minimize friction, 
specimen slippage, and misalignment.

-	 Where possible, the testing protocol should be car-
ried out on known materials to identify systematic 
errors, and for calibration purposes.

-	T here should be clear and detailed reporting of the 
testing methodology and technique of data 
analysis.

It is important that any inter-study comparison take 
into account the specimen geometry, specimen-platen 
interface conditions, and specimen machining tech-
nique.15 Further studies are required to look specifically 
at the effect of factors such as specimen geometry, stor-
age, boundary conditions, and strain rate on human 
bone apparent modulus. These will help to refine a 
standardized and optimal testing method for future com-
pression testing of bone.

Supplementary material
Tables showing characteristics for all studies 
included in qualitative synthesis.
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