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Cementless arthroplasty provides biological 
fixation with superior durability and enhanced 
preservation of bone compared with cemented 
arthroplasty.1-3 Since the stability of a cement-
less arthroplasty is based on the porous struc-
ture formed at the surface of the components, 
this procedure requires the initial application of 
a fixation force, excellent adhesion and effec-
tive biological fixation.1,4,5 Osseointegration 
can be achieved by offering an optimal porous 
structure for bone ingrowth by forming pores 
at the surface of the components similar to that 
of cancellous bone.4,6,7

The ideal structure contains interconnected 
macro- (pore size >100 um) and micro- (pore 
size < 20 mm) porosity.1,4,8 Various surface 
treatments, including bead coating, fibre 
metal coating and plasma spraying have been 

developed for promoting the ingrowth of 
bone for cementless components. These 
methods are widely used with rates of long-
term clinical survival that range from 81% to 
99% after approximately ten years.9-12

However, Karageorgiou et  al13 reported 
that the porosity of conventional surface 
coatings (30% to 60%) is less than that of 
cancellous bone (50% to 90%). Additionally, 
the requirement of heating to over 2000°F 
during the coating process reduces the 
fatigue strength of the substrate. Clinical 
results have been excellent despite these 
drawbacks. Shin et  al14 introduced laser-
engineered net shaping coating technology 
to overcome the limitations of conventional 
coatings. They used a 3D additive manufac-
turing technology, laser-aided direct metal 

The biological response to laser-aided 
direct metal-coated Titanium alloy 
(Ti6Al4V)

Objectives
Laser-engineered net shaping (LENS) of coated surfaces can overcome the limitations of con-
ventional coating technologies. We compared the in vitro biological response with a titanium 
plasma spray (TPS)-coated titanium alloy (Ti6Al4V) surface with that of a Ti6Al4V surface 
coated with titanium using direct metal fabrication (DMF) with 3D printing technologies.

Methods
The in vitro ability of human osteoblasts to adhere to TPS-coated Ti6Al4V was compared 
with DMF-coating. Scanning electron microscopy (SEM) was used to assess the structure and 
morphology of the surfaces. Biological and morphological responses to human osteoblast 
cell lines were then examined by measuring cell proliferation, alkaline phosphatase activity, 
actin filaments, and RUNX2 gene expression.

Results
Morphological assessment of the cells after six hours of incubation using SEM showed that 
the TPS- and DMF-coated surfaces were largely covered with lamellipodia from the osteo-
blasts. Cell adhesion appeared similar in both groups. The differences in the rates of cell 
proliferation and alkaline phosphatase activities were not statistically significant.

Conclusions
The DMF coating applied using metal 3D printing is similar to the TPS coating, which is 
the most common coating process used for bone ingrowth. The DMF method provided an 
acceptable surface structure and a viable biological surface. Moreover, this method is auto-
matable and less complex than plasma spraying.
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fabrication (DMF), and evaluated its use as a surface coat-
ing technology for artificial joints. A DMF coating has a 
porosity of about 65% with a pore size ranging from 200 
μm to 500 μm, and is about 500 μm thick. It has 17.5% 
greater tensile strength and 10.2% greater shear strength 
than a coating applied using titanium plasma spray (TPS). 
The DMF coating has a better uniform porous structure 
and has superior mechanical properties to those of coat-
ings provided by other methods.14 However, the biologi-
cal responses to a DMF coating have not been reported. 
We therefore investigated whether in vitro responses to 
TPS-coated and DMF-coated titanium alloy (Ti6Al4V) 
were biologically different.

Materials and Methods
We compared the cell morphology, confocal microscopy 
results for RUNX2 gene, the rate of proliferation of cells 
and the alkaline phosphatase activity of TPS- and DMF-
coated Ti6Al4v alloy surfaces in vitro. Two groups of 
Ti6Al4V discs with a diameter of 12 mm and a thickness 
of 10 mm, were manufactured with 30 being used in 
each group.
Manufacturing of the specimens.  For the TPS technique, 
an electric arc was generated between two electrodes in 
a gun. The arc was heated to 20 000°F. The gases were 
passed through a jet-shaped anode at high speed. The 
powder for the coating was injected into the plasma gas 
stream, melted, and impacted onto the substrate at a 
high kinetic energy to form a porous coating. Varying the 
operating parameters determined the different degrees 
of porosity of the coatings.

For the DMF technique, pure titanium (Ti) (grade 2, 
ASTM F1580) powder was melted and laminated using 
high-powered laser irradiation to a Ti6Al4V surface. The 
porous structure was then manufactured using a 3D com-
puter-assisted programme that created a sufficient fixation 
force by matching the material to the properties of cancel-
lous bone. The surface was irradiated with a laser (power 
100 W, scan speed 1.5 m/minute, powder delivery rate 
2.2 g/minute) by following a pre-programmed path along 
a grid, which formed a melted pool. Next, the powders 

were sprayed and laminated onto the surface to create a 
coating whose mean thickness was 500 µm.14,15

The two surfaces were characterized using scanning 
electron microscopy (SEM) (model JSM-6700F; JEOL Ltd, 
Tokyo, Japan) after the test specimens had been coated. 
The SEM results indicated different surface characteristics 
(Fig. 1). Compared with the TPS surface (Fig. 1a), the 
DMF surface had a more uniformly porous structure with 
a mean pore size in the coating of between 200 µm and 
500 µm, mean porosity of 65% (sd 5%) and thickness of 
500 µm (sd 100 µm)(Fig. 1b).
Culture and osteogenic differentiation of human mesen-
chymal stem cells.  Two passages of human bone mar-
row-derived mesenchymal stem cells (hMSCs; Catholic 
Master Cells) were obtained from the Catholic Institute 
of Cell Therapy (CIC Korea Inc., Seoul, South Korea). The 
certificates of analysis for the hMSC phenotype confirmed 
the CD31, CD34 and CD45 negative markers and CD73 
and CD90 positive markers. The hMSCs were cultured in 
Dulbecco’s modified Eagle’s medium (DMEM) (HyClone; 
GE Healthcare, Waltham, Massachusetts), 20% foetal 
bovine serum (FBS) (HyClone; GE Healthcare) with 1% 
penicillin/streptomycin (Gibco BRL, Grand Island, New 
York) for five passages. The cells were maintained at 37°C 
for 24 hours in a humidified incubator containing 5% CO2.

Culturing six passages of hMSCs induced osteogenic 
differentiation according to a StemPro Osteogenesis Dif
ferentiation Kit (Thermo Fisher Scientific, Loughborough, 
UK). The osteogenesis differentiation medium was an oste-
ocyte differentiation basal medium with osteogenesis sup-
plement gentamicin reagent. The hMSCs were seeded in a 
six-well culture plate at a cell density of 3 × 104 cells/cm2. 
The media were replaced every three to four days for a 
total incubation period of 21 days.
Cell morphology.  The osteoblasts from the hMSCs were 
seeded with 5 × 104 cells on TPS, DMF and machined 
Ti6Al4V specimens. After six hours of seeding of cells 
in each implant, the media were removed and the cells 
were washed three times with phosphate-buffered saline 
(PBS). These cells were stabilized for two hours after add-
ing 2% glutaraldehyde–PBS solution and then washed 

Fig. 1

Scanning electron microscopy images of the surfaces of (a) titanium plasma spray (TPS)-coated (30×) and (b) direct metal fabrication (DMF)-coated (30×) 
specimens showing the different surface characteristics. Compared with the TPS-coated surface, the DMF-coating had a more uniform porosity, which ranged 
from 200 μm to 500 μm.
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three times with distilled water. At 30-minute intervals, 
the cells were dehydrated with 50% to 100% ethanol 
solutions. The ethanol was removed and the cells were 
left at room temperature to allow complete evaporation 
of the ethanol. The two surfaces were then characterized 
using SEM (model JSM-6700F; JEOL Ltd) after the speci-
mens had been coated with platinum.
Cell proliferation assay.  The osteoblasts were seeded 
with 5 × 104 cells on the TPS, DMF and machined 
Ti6Al4V specimens, and incubated for 24, 48, 72 and 
96 hours. The medium was replaced with fresh medium 
before measuring cell proliferation using the Cell Titer 
96 Non-Radioactive Cell Proliferation Assay (Promega 
Corp., Madison, Wisconsin), according to the manufac-
turer's instructions. This assay is a colorimetric method 
for determining the number of viable cells. In this study, 
the number of viable cells was measured at 450 nm using 
an enzyme-linked immunosorbent assay (ELISA) reader 
(Bio-Tek Instruments Inc., Winooski, Vermont).
Alkaline phosphatase activity.  Alkaline phosphatase 
(ALP) activity was measured by seeding the osteoblasts 
with 5  × 104 cells in medium containing 1% FBS on 
TPS, DMF, and machined Ti6Al4V samples, followed 
by incubation for seven and 14 days. The medium was 
removed and the cells were washed three times with PBS 
to remove as much serum in the culture fluid as pos-
sible. Next, 1 mL of 0.02% Triton1 X-100 (Merck KGaA, 
Damstadt, Germany) was placed on a sample to lyse 
the cells. The cytolytic solution was transferred into 
a 1.5 mL tube, and the cells were sonicated. The tube 
was centrifuged (14 000 rpm, 4°C, 15 minutes) and the 
supernatant was transferred to a new 1.5 mL tube. Then, 
100 μL of 1 mol/L Tris-HCl, 20 μL of 5 mmol/L MgCl2, 
and 20 μL of 5 mmol/L p-nitrophenyl phosphate (PNPP) 
were added to the supernatant. The mixture was left to 
react at 37°C for 30 minutes, and 50 μL of 1 N NaOH 
was added to stop the reaction. Using PNPP as a stan-
dard, the absorbance was measured at 410 nm using a 
spectrophotometer. The ALP activity was expressed as 
the quantity of PNPP produced divided by the reaction 
time and the protein synthesis quantity, as measured by 
the Bio-Rad Protein Assay kit (Bio-Rad Laboratories, San 
Jose, California).

Immunofluorescence staining.  The differentiation of osteo
blasts was evaluated based on immunofluorescence stain-
ing for the RUNX2 gene. After 21 days of incubation, 
irrigation with PBS three times and stabilization with 4% 
paraformaldehyde for ten minutes, the cells were incubated 
with primary antibodies to the RUNX2 (1:100; Abcam, 
Cambridge, United Kingdom) overnight at 4°C. The cells 
were then incubated with secondary Alexa Fluor 594 goat 
anti-rabbit and mouse antibody (Invitrogen, Carlsbad, 
California) for one hour at room temperature. They were 
mounted with 4’,6-diamino-2-phenylindole (DAPI) for ten 
minutes and then washed with PBS. We confirmed the dif-
ferentiation of osteoblasts with colocalization by expression 
of DAPI and RUNX2 under high-powered magnification via 
confocal microscopy (Olympus, Tokyo, Japan).
Statistical analysis.  We compared the mean cell prolif-
eration assay and ALP activity of the cells on the two sur-
faces using a one-way analysis of variance (ANOVA) test. 
Statistical analysis was performed using SPSS 18.0 soft-
ware (IBM, Armonk, New York, USA). Significance was 
defined as a p-value of less than 0.05.

Results
Scanning electron microscopy was used to study the 
morphology of the cells after six hours of in vitro incuba-
tion. The TPS (Fig. 2a) and DMF (Fig. 2b) surfaces were 
extensively covered with lamellipodia from the osteo-
blasts. Additionally, thin cytoplasmic projections (filopo-
dia) extended into the interior of the pores. Osteoblasts 
on the surfaces of TPS and DMF covered more exten-
sively, comparing machined Ti6Al4V (Fig. 2c) surfaces.

Adhesion of the cells was similar in the TPS and DMF 
groups, as reflected in the expression and distribution of 
the RUNX2 gene (Fig. 3) and actin filament (Fig. 4). 
However, expression of RUNX2 gene and distribution of 
actin filament were showing better than machined Ti6Al4V 
(Figs 3c and 4c).

The TPS and DMF groups were statistically different 
compared with the machined Ti6Al4V group on 72 hours 
incubation (p = 0.017 and 0.016, respectively) in cell 
proliferation assay of the osteoblasts. There was no statis-
tically significant difference between the TPS and DMF 
groups (p = 0.367) (Fig. 5).

Fig. 2

Scanning electron microscopy (SEM) images show osteoblasts after six hours of incubation on (a) titanium plasma spray (TPS) (x 1000), (b) direct metal fabrica-
tion (DMF) (x 2000), and (c) machined Ti6Al4V (x 3000) specimens. In contrast to machined surfaces, DMF and TPS surfaces were largely and strongly covered 
with healthy lamellipodia of the osteoblasts, and a thin cytoplasmic process branched out from the filopodia to enter a pore.
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The ALP of the TPS and DMF groups were not statisti-
cally significantly different comparing with the machined 
group (p = 0.021 and 0.034, respectively) and there 

were insignificant differences between DMF and TPS 
groups (p = 0.416) (Fig. 6).

Discussion
The morphology, proliferation, and ability to differentiate 
of osteoblasts were used to investigate the biological 
response of TPS and DMF coatings of Ti alloys. The study 
had limitations. First, we assessed only in vitro effects on 
cell morphology, proliferation and differentiation. Further 
studies are needed to compare the these coatings, which 
have not yet been studied in vivo. Secondly, a DNA study 
was not performed. Such a study could enhance the 
impact of these findings by also assessing the levels of 
type I collagen and osteocalcin.

The mean porosity (65% ± 5%) of the DMF specimens 
was within the range of porosity for human cancellous 
bone (50% to 90%), but that of the TPS specimens (40% 
± 5%) was not. Also, despite the inferior mechanical and 
physical characteristics of the coating structure due to the 
approximately 1.6-fold higher porosity, the DMF speci-
mens had comparable, if not better, mechanical and 
physical properties to those of the current commercial 
TPS specimens, suggesting that DMF creates a more 
favourable biomimetic porous structure than TPS. 
Therefore, DMF should be regarded as a more appropri-
ate surface coating for cementless arthroplasty than the 
existing TPS technology. As DMF can control porosity, it 

Fig. 4

Confocal microscopy images showing the expression and distribution of actin filaments in (a) titanium plasma spray (TPS)-coated specimens (x 100), (b) direct 
metal fabrication (DMF)-coated specimens (x 100), and machined Ti6Al4V (x 100) specimens. Note the similar staining intensity of actin filaments (red lines) 
around the cytoplasm for the TPS and DMF groups.
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Fig. 5

Results (mean + SD) of osteoblast cell proliferation assays at 24, 48 and 72 
hours for titanium plasma spray (TPS)-coated specimens, direct metal fabrica-
tion (DMF)-coated specimens and machined specimens. The cell proliferation 
assay difference was not statistically significant between the TPS and DMF 
groups (p = 0.367).

Fig. 3

Confocal microscopy images showing the expression and distribution of the RUNX2 gene in (a) titanium plasma spray (TPS)-coated specimens (x 200), (b) direct 
metal fabrication (DMF)-coated specimens (x 200), and machined (x 200) specimens. Note the similar staining intensity of RUNX2 (red dots) in the nuclei for 
TPS and DMF groups.
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could be used to create a patient-specific porous struc-
ture for cementless arthroplasty.14,16

The cell morphology and proliferation assay indicated 
that all the surfaces were cytocompatible. The cell prolif-
eration in the DMF and TPS groups was not statistically 
different. Osteoblasts on the surface of DMF specimens 
spread and formed lamellipodia, as they also did on the 
TPS specimens, indicating that the two surfaces had simi-
lar cytocompatibility. Expressions of RUNX2 gene and 
actin filament, and ALP activity are indicators of osteo-
genic differentiation, bone formation and matrix minerali-
zation.17-19 The DMF and TPS groups were not significantly 
different for these expressions indicating that the two sur-
faces had similar effects on the differentiation, bone for-
mation and matrix mineralization of human osteoblasts.

We found that the coating produced by DMF with 
metal 3D printing was similar to that produced with TPS, 
which is the most commonly used coating for bone 
ingrowth. We introduced 3D printing deposition with 
DMF with the hypothesis that the combination could 
improve the morphology, proliferation, and ability of oste-
oblasts to differentiate in vitro to coated Ti6Al4V compared 
with the conventional plasma spray method. The DMF 
and TPS groups displayed similar surface characteristics in 
their ability to osseointegrate and their biomechanical 
quality. Hence, the method of using 3D printing with DMF 
provided an acceptable surface structure and a viable bio-
logical surface. Moreover, this method is automatable and 
less complex than plasma spraying. Thus, DMF with 3D 
printing is a novel and efficient method that could be used 
to create and process prostheses. Using this technique in 
conjunction with laser welding could enable the manufac-
ture of components with various configurations.
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Fig. 6

Results (mean + SD) of alkaline phosphatase (ALP) activities of osteoblasts at 
seven and 14 days for titanium plasma spray (TPS)-coated specimens, direct 
metal fabrication (DMF)-coated specimens and machined specimens. The dif-
ferences in the ALP activities betweent the TPS and DMF groups were not 
statistically significant (p = 0.416).


