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Objective
Excessive mechanical stress on synovial joints causes osteoarthritis (OA) and results in the 
production of prostaglandin E2 (PGE2), a key molecule in arthritis, by synovial fibroblasts. 
However, the relationship between arthritis-related molecules and mechanical stress is still 
unclear. The purpose of this study was to examine the synovial fibroblast response to cyclic 
mechanical stress using an in vitro osteoarthritis model.

Method
Human synovial fibroblasts were cultured on collagen scaffolds to produce three-
dimensional constructs. A cyclic compressive loading of 40 kPa at 0.5 Hz was applied to the 
constructs, with or without the administration of a cyclooxygenase-2 (COX-2) selective 
inhibitor or dexamethasone, and then the concentrations of PGE2, interleukin-1β (IL-1β), 
tumour necrosis factor-α (TNF-α), IL-6, IL-8 and COX-2 were measured.

Results
The concentrations of PGE2, IL-6 and IL-8 in the loaded samples were significantly higher 
than those of unloaded samples; however, the concentrations of IL-1β and TNF-α were the 
same as the unloaded samples. After the administration of a COX-2 selective inhibitor, the 
increased concentration of PGE2 by cyclic compressive loading was impeded, but the 
concentrations of IL-6 and IL-8 remained high. With dexamethasone, upregulation of PGE2, 
IL-6 and IL-8 was suppressed.

Conclusion
These results could be useful in revealing the molecular mechanism of mechanical stress in 
vivo for a better understanding of the pathology and therapy of OA.
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Article focus
 Analysis of molecular mechanism of

osteoarthritis (OA) development
 Analysis of mechanotransduction in OA
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Key messages
 Cyclic compressive loading on a 3D cul-

tured construct of human fibroblasts
upregulated PGE2 via COX-2 production

 Cyclic compressive loading upregulated
interleukin-6 (IL-6) and IL-8 proteins

 The expression of these molecules was
upregulated without IL-1β and/or tumour
necrosis factor (TNF)-α stimulation

Strengths and limitations
 Strengths - our 3D culture system is close

to intra-articular environment
 Our system could be useful in revealing

the molecular mechanism of mechanical
stress

 Limitation - the intracellular signal trans-
ductions of PGE2, IL-6 and IL-8 (mechano-
transduction) have not been clarified

Introduction
Osteoarthritis (OA) is a common disease that
causes joint pain, deformity and functional
disability, and is increasingly prevalent in
hundreds of millions of people worldwide.1

Congenital disorders, obesity, labour, sports,
malalignment and joint instability may
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initiate processes leading to loss of cartilage. In addition,
repeated excessive mechanical stress on the synovial
joint, which is composed of cartilage and synovium, is
considered to be a key factor in OA development. How-
ever, the molecular relationship between mechanical
stress and OA development is still unclear.

OA involves a variable degree of synovitis, and these
inflammations cause many symptoms including joint
swelling and effusion in clinical situations.2-6 Synovial
fibroblasts and macrophages, as well as chondrocytes,
play an important role in OA development through syno-
vitis, and synovial macrophages are considered to pro-
duce pro-inflammatory cytokines, such as interleukin-1β
(IL-1β) and tumour necrosis factor-α (TNF-α).6-10 These
cytokines stimulate synovial fibroblasts and chondrocytes
to produce other cytokines, such as IL-6 and IL-8, and sev-
eral enzymes, such as matrix metalloproteinases (MMPs)
and aggrecanases (ADAMTSs). These enzymes sever type
II collagen and proteoglycan, the principal components
of the extracellular matrix of articular cartilage.11-15 In
addition, prostaglandin E2 (PGE2) plays a significant role
in OA by causing pain, inflammation, and cartilage deg-
radation.16-18 Although PGE2 is known to be produced by
synovial fibroblasts or chondrocytes in response to IL-1β
and/or TNF-α, which is produced by synovial macro-
phages,19-21 the molecular mechanism of PGE2 produc-
tion triggered by mechanical stress is still unclear. 

We have developed a novel three-dimensional (3D) cul-
ture system using cyclic mechanical stress on synovial cells
or chondrocytes for revealing the molecular mechanism of
OA development resulting from mechanical stress. In par-
ticular, we have focused on synovial cells, which play an
important role in OA development as mentioned above. In
our previous study, we have shown that cyclic mechani-
cal stress on 3D cultured constructs of human synovial
fibroblasts upregulated mRNA levels of MMP1, MMP2,
MMP3, MMP9, MMP13, ADAMTS4, and ADAMTS5 genes
in a load-dependent manner22-23 however, the induction
of PGE2 as a result of mechanical stress has not been inves-
tigated. In the PGE2 synthesis pathway, cyclooxygenase-2
(COX-2) and microsomal prostaglandin E synthase-1
(mPGES-1) are key enzymes that metabolise arachidonic
acid to PGE2.24,25 Nonsteroidal anti-inflammatory drugs
(NSAIDs) and steroids, which downregulate PGE2 synthe-
sis through inhibition of COX-2 activity, have been widely
used in the treatment of OA.19 

The purpose of this study was to examine the expression
of PGE2 and the related cytokine expressions of IL-1β, TNF-α,
IL-6 and IL-8 by cyclic compressive loading on 3D cultured
constructs of human synovial fibroblasts and to clarify the
effects of NSAIDs and steroids using our in vitro OA model.

Materials and Methods
Cell culture of primary human synovial fibroblasts.
Human synovial membranes were obtained aseptically
from eight patients aged from 17 to 34 years (three male,

five female) who underwent arthroscopic knee surgery in
accordance with a protocol approved by the Osaka
University Institutional Ethical Committee. We followed
the Helsinki Declaration and obtained written informed
consent from all the patients involved in this study. The
cell isolation protocol was essentially the same as the pro-
tocol used previously for the isolation of human synovial
fibroblasts.22,26 In brief, synovial membrane specimens
were rinsed with phosphate-buffered saline (PBS),
minced meticulously and digested with 0.4% collagenase
XI (Sigma-Aldrich, St. Louis, Missouri) for two hours at
37°C. After neutralisation of the collagenase with a
growth medium containing high-glucose Dulbecco’s
Modified Eagle’s Medium (HG-DMEM, Wako, Osaka,
Japan) supplemented with 10% fetal bovine serum (FBS;
HyClone, Logan, Utah) and 1% penicillin/streptomycin
(Gibco BRL, Life Technologies Inc., Carlsbad, California),
the cells were collected by centrifugation, washed with
PBS, resuspended in a growth medium, and plated in cul-
ture dishes. For expansion, cells were cultured in the
growth medium at 37°C in a humidified atmosphere of
5% CO2. The medium was replaced once a week. After
ten to 14 days of primary culture, when the cells reached
near confluence, they were washed twice with PBS, har-
vested by treatment with trypsin-EDTA (0.25% trypsin
and 1 mM EDTA; Gibco BRL, Life Technologies Inc.), and
replated at 1:3 dilution for the first subculture. Cell pas-
sages were continued in the same manner with 1:3 dilu-
tion when cultures reached near confluence. Cells at
passages 3 to 7 were used in the present study.
Cell seeding on collagen scaffold and production of the
3D engineered construct. The primary cultured cells
were harvested and seeded on collagen scaffolds to pro-
duce 3D constructs as previously described.22,23 In brief,
the cultured cells (5 × 105/scaffold) were suspended in a
growth medium and then mixed with an equal volume of
1% Atelocollagen gel (Koken, Tokyo, Japan) on ice to pro-
duce a cell suspension in 0.5% collagen solution. The cell
suspension was incorporated into collagen scaffolds
(Atelocollagen Sponge Mighty, Koken, Tokyo, Japan;
5 mm diameter, 3 mm thick) by centrifugation at 500 × g
for five minutes. The collagen scaffold which we used has
an interconnected pore size of 30 nm to 200 nm. The
scaffolds were fabricated via the process of freeze-drying
of 10% collagen gel and cross-linking to reinforce the
mechanical property. This is similar to those of articular
cartilage. The cell–scaffold constructs were then incu-
bated at 37°C for gelation to produce 3D cell–scaffold
constructs (Fig. 1a). The cells in the 3D construct were
evenly embedded in the collagen scaffold, with no cell
leakage and collagen breakage after cell seeding, as we
have previously shown with histological evaluation.22 The
constructs were maintained in a growth medium of HG-
DMEM, with 10% FBS in free-swelling conditions at 37°C
and in 5% CO2 for three days prior to the application of
cyclic load stimulation.
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Cyclic compressive loading on 3D constructs. Cyclic
unconfined compressive loading was applied to the 3D
constructs using a custom-designed apparatus, a cyclic
load bioreactor (CLS-5J-Z, Technoview, Osaka, Japan), as
previously described (Figs 1b to 1d).23 In brief, the loading
experiments were performed with metal platens and plas-
tic culture dishes in HG-DMEM and 10% FBS in a humidi-
fied incubator maintained at a temperature of 37°C in 5%
CO2 . In all of these experiments, a cyclic compressive load
of 40 kPa was applied to the constructs for one hour at the
rate of 0.5 Hz, in accordance with the protocol used previ-
ously, in order to detect the expression of PGE2, IL-1β, IL-6,
IL-8 and TNF-α more easily.22,23 As mentioned above, a
cyclic compressive load of 40 kPa was chosen, which
yielded a 10% compression strain (approximately),

because it maximally induced the mRNA expression of
MMP1, MMP3, MMP9, MMP13 genes compared with the
lower compressive loading of 0 kPa or 20 kPa in our previ-
ous study.22 In addition, we measured the expression of
PGE2 and the related cytokine expressions six hours after
cyclic loading according to our previous study, in which
the expression of MMPs maximally upregulated at this
time.22

Experimental design. The experimental design is illus-
trated in Fig. 1e. On day 0, the primary cultured human
synovial fibroblasts were harvested, seeded on collagen
scaffolds, and maintained in growth media for three days
in free-swelling conditions. For the first experiment, on
day three, cyclic compressive loading was applied to the
3D constructs for one hour. 3D constructs without
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Figure 1a – 3D cell–scaffold con-
structs made using collagen scaffolds
(AtelloCell, MIGHTY); b) monitor and
controller; c) Cyclic load stimulater
(CLS-5J-Z, Technoview, Osaka, Japan)
in the incubator; d) Schematic repre-
sentation of the cyclic load stimula-
tor, cyclic-loaded samples, and
unloaded samples; e) Experimental
protocol for cyclic compressive load-
ing on 3D constructs.

Fig. 1a Fig. 1b

Fig. 1c

Fig. 1d
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loading were considered to be the control. After six hours,
culture supernatant was collected, and the concentra-
tions of PGE2, IL-1β, TNF-α, IL-6 and IL-8 were measured
with the homogeneous time-resolved fluorescence
(HTRF) method (described below in detail). In addition,
the mRNA expression of COX-2 and mPGES-1 genes were
quantitatively measured using a real-time polymerase
chain reaction (PCR). In contrast to the cyclic loading,
10 ng/ml of IL-1β (R&D Systems, Minneapolis, Minne-
sota) or 100 ng/ml of TNF-α (R&D Systems) was adminis-
tered to the unloaded 3D constructs on day three. A total
of six hours after the administration of these cytokines,
the concentration of PGE2 in culture supernatant was
measured using HTRF. For the second experiment, cyclic
compressive loading was applied to the 3D constructs
with or without two types of COX-2 inhibitors: COX-2
selective inhibitor (celecoxib, provided by Pfizer Japan
Inc., Tokyo, Japan) or dexamethasone (Sigma-Aldrich).
These drugs were administered just before cyclic com-
pressive loading was applied. Six hours after cyclic load-
ing, the concentrations of PGE2, IL-6 and IL-8 in culture
supernatant were measured using HTRF. In addition, the
mRNA expression of the COX-2 gene was quantitatively
estimated by real-time PCR.
Quantitative protein analysis of culture supernatant
using HTRF. For each culture supernatant sample, an
enzyme immunoassay was performed to measure the
concentrations of PGE2, IL-1β, TNF-α, IL-6 and IL-8 using
HTRF human PGE2, IL-1β, TNF-α, IL-6 and IL-8 assay kits
(CIS Bio International, Saclay, France).
Quantitative mRNA expression analysis of COX-2 and
mPGES-1 genes. Total RNAs from the 3D constructs were
extracted using a RNeasy mini kit (Qiagen, Valencia,
California). Complementary DNAs (cDNAs) were obtained
by the use of a reverse transcription (RT) of 200 μg of total
RNA through the use of a reverse transcription system (Pro-
mega, San Luis Obispo, California) with random primers.
For the quantification of gene expression, PCR amplifica-
tion was performed with SYBR Premix ExTaq (Takara Bio,
Shiga, Japan) on a LightCycler 1.5 real-time PCR system
(Roche, Indianapolis, Indiana). RNA expression levels were
normalised to that of GAPDH. The primers used were as fol-
lows: human GAPDH (forward): TCT CTG CTC CTC CTG
TTC GAC, (reverse): GTT GAC TCC GAC CTT CAC CTT C,
human COX-2 (forward): AGG GTT GCT GGT GGT AGG
AA, (reverse): GGT CAA TGG AAG CCT GTG ATA CT,
human mPGES-1 (forward): CCT GGG CTT CGT CTA CTC
CTT, (reverse): AGT GCA TCC AGG CGA CAA A.
Statistical analysis. Every experiment was performed
more than three times using independent donors. Statistical
analysis was performed with analysis of variance (ANOVA)
followed by post hoc testing (> 2 groups). The comparison
of other parameters was analysed with a Mann–Whitney U
test (two groups). The results are presented as mean and SD.
The data were analysed with JMP 9 (SAS Institute, Cary,
North Carolina) and significance was set at p < 0.05.

Results
The expressions of PGE2 and related molecules by cyclic
compressive loading. The concentrations of PGE2, IL-6
and IL-8 in a culture supernatant of loaded samples were
significantly higher compared with that of unloaded sam-
ples (PGE2, 0.33 ng/ml (SD 0.055) vs 2.07 ng/ml (SD 0.65),
p < 0.01 (Fig. 2a); IL-6, 0.71 ng/ml (SD 0.42) vs 6.89
(SD 0.25), p < 0.01 (Fig. 2b); and IL-8, 0.77 ng/ml (SD 0.39)
vs 8.76 ng/ml (SD 0.69), p < 0.01 (Fig. 2c)). However, the
concentrations of IL-1β and TNF-α were unchanged
between loaded and unloaded samples (IL-1β, 4.8 pg/ml
(SD 8.2) vs 7.4 pg/ml (SD 8.4), p = 0.74 (Fig. 2d) and TNF-α,
9.6 pg/ml (SD 8.8) vs 7.6 pg/ml (SD 8.3), p = 0.75 (Fig. 2e)).
The administration of IL-1β or TNF-α also significantly
induced PGE2 production compared with the non-admin-
istered control (IL-1β, 0.33 ng/ml (SD 0.055) vs 2.25 ng/ml
(SD 0.65), p < 0.01 and TNF-α, 0.33 ng/ml (SD 0.055)
vs 1.84 ng/ml (SD 0.63), p < 0.01 (Fig. 2a)). The mRNA
levels of COX-2 and mPGES-1 genes of loaded samples
were significantly higher compared with that of unloaded
samples (COX-2, 1 vs 6.97 (SD 3.66), p < 0.01 (Fig. 2f);
mPGES-1, 1 vs 5.03 (SD 2.94), p < 0.01 (Fig. 2g)).
The effects of a COX-2 selective inhibitor on mechani-
cally induced PGE2, IL-6 and IL-8 proteins and COX-2
gene expressions. The increased concentration of PGE2
by cyclic compressive loading was impeded in a dose-
dependent manner after administration of a COX-2
selective inhibitor (Fig. 3a). More than 100 nM of a
COX-2 selective inhibitor significantly abolished the
upregulation of PGE2 by cyclic compressive loading
(p < 0.01). However, the increased concentration of IL-6
and IL-8 by cyclic compressive loading remained high,
and the inhibitory effects of the COX-2 selective inhibi-
tor were not observed (Figs 3b and 3c). The upregula-
tion of COX-2 mRNA levels by cyclic compressive
loading was not suppressed by a COX-2 selective inhib-
itor (Fig. 3d).
The effects of dexamethasone on mechanically
induced PGE2, IL-6 and IL-8 proteins and COX-2 gene
expressions. The increased concentration of PGE2 by
cyclic compressive loading was suppressed in a dose-
dependent manner after administration of dexametha-
sone (Fig. 4a). More than 100 nM of dexamethasone
significantly abolished the upregulation of PGE2 by
cyclic compressive loading (p < 0.01). Similarly, the
increased concentration of IL-6 and IL-8 was also sup-
pressed in a dose-dependent manner (Figs 4b and 4c).
More than 100 nM of dexamethasone significantly abol-
ished the upregulation of IL-6 or IL-8 by cyclic compres-
sive loading (p < 0.01). The upregulation of COX-2
mRNA levels by cyclic compressive loading was sup-
pressed in a dose-dependent manner after the adminis-
tration of dexamethasone (Fig. 4d). More than 10 nM of
dexamethasone significantly abolished the upregula-
tion of COX-2 mRNA levels by cyclic compressive load-
ing (p < 0.01).
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Discussion
Mechanical stress is believed to be important for every
cell in our body, particularly intra-articular tissues such as
bone, cartilage, meniscus, and synovium, for the mainte-
nance and regeneration of tissues and organs. Many
studies have demonstrated that mechanical stress to
chondrocytes, cartilage explants, or mesenchymal stem
cells promoted bone and cartilage development.27-30

However, mechanical stress causes joint diseases, and
excessive mechanical stress may lead to the development
of OA. PGE2 is well known as a pathogenic molecule
related to OA development, in addition to MMPs,
ADAMTS, and inflammatory cytokines.31 To investigate
the molecular mechanisms of PGE2 and related inflam-
matory cytokines by mechanical stress, we used the 3D
culture system using cyclic compressive loading, which

can mimic the intra-articular environment through the
adjustment of magnitudes, durations, and frequencies of
loads. The loading condition of this study represents that
cyclic loading for one hour at a rate of 0.5 Hz is nearly
equal to the walking pace. We have chosen 40 kPa, which
yielded approximately 10% compression strain, because
it maximally induced mRNA expression of MMP1, MMP3,
MMP9 and MMP13 genes compared with the lower com-
pressive loading of 0 kPa or 20 kPa in our previous
study.22 In addition, there have been no obvious data of
biomechanics in synovium as far as we know, while
> 10% compression strain to cartilage was shown to
inhibit proteoglycan and protein synthesis in a dose-
dependent manner in bovine calf cartilage.32-34 There-
fore, this loading condition may be considered excessive
loading over the physiological conditions. Also, the
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Graphs showing the expressions of PGE2 and related molecules by cyclic compressive loading. a)
PGE2 was significantly upregulated by cyclic compressive loading, interleukin- (IL-)1β, or tumour
necrosis factor- (TNF)-α (n = 7). b) IL-6 (n = 6) and c) IL-8 (n = 6) were significantly upregulated by
cyclic compressive loading. d) IL-1β (n = 6) and e) TNF-α (n = 6) were not upregulated by cyclic com-
pressive loading. f) COX-2 (n = 6) and g) mPGES-1 (n = 5) mRNA levels were significantly upregulated
by cyclic compressive loading (CCL;cyclic compressive loading)*p < 0.01.
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loading was applied with uni-axial unconfined compres-
sion, and this condition could also mimic the intra-
articular environment, in which both compressive and
tensile stresses are applied to the synovium.23,35,36 More-
over, a 3D culture system is better to evaluate a biological
reaction, because 3D culture is close to the physical envi-
ronment and there are sometimes differences detected
between 2D and 3D cultures.37-41

In this study, we directly demonstrated that cyclic com-
pressive loading on a 3D-cultured construct of human
synovial fibroblasts upregulated PGE2, IL-6 and IL-8 pro-
teins. We also showed that the gene expression of COX-2
and mPGES-1, which are the key enzymes that metabolise
arachidonic acid to PGE2, was upregulated by cyclic
compressive loading (Fig. 5). In addition, the upregula-
tion of PGE2 by cyclic compressive loading was

suppressed by the administrations of a COX-2 selective
inhibitor or dexamethasone in a dose-dependent man-
ner. As a pharmacological effect, COX-2 selective
inhibitors inhibit the activity of COX-2, whereas dexa-
methasone inhibits the synthesis of COX-2.42-45 In this
study, a COX-2 selective inhibitor suppressed PGE2 pro-
duction in a dose-dependent manner without changing
the COX-2 mRNA level, whereas dexamethasone sup-
pressed PGE2 production by suppressing the COX-2 gene
expression. These results reflect well with the pharmac-
ology of PGE2 inhibition by NSAIDs and steroids in OA.
Interestingly, a COX-2 selective inhibitor did not suppress
IL-6 and IL-8 production, whereas dexamethasone sup-
pressed these cytokines in a dose-dependent manner.
The different effects of these chemicals on IL-6 and IL-8
may account for the distinct functions in clinical usage.
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suppressed by a COX-2 selective inhibitor (n = 5). *p < 0.01
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These functions are still unclear and further studies are
required.

Synovial fibroblasts did not produce IL-1β and TNF-α by
cyclic compressive loading in this study, as reported pre-
viously.6-10 To our surprise, however, synovial fibroblasts
produced PGE2, IL-6 and IL-8 without the stimulation of
IL-1β and TNF-α, which are produced by synovial macro-
phages. Undoubtedly, IL-1β and TNF-α, produced by
synovial macrophages, are considered to be key factors
for OA development through the production of PGE2,
MMPs, and ADAMTSs by synovial fibroblasts and chon-
drocytes.2,5,6,15,20,46-50 On the other hand, it has been
unclear what triggers the activation of synovial
macrophages. In this study, PGE2 was significantly
upregulated by cyclic compressive loading without IL-1β

and TNF-α stimulation. Also, we have previously demon-
strated that cyclic mechanical stress on synovial fibro-
blasts upregulated mRNA levels of MMP1, MMP2, MMP3,
MMP9, MMP13, ADAMTS4 and ADAMTS5 genes in a
load-dependent manner through the same experi-
ment.22,23 Taken together, the upregulation of the key
molecules of OA development including PGE2, MMPs,
and ADAMTSs was induced by mechanical stress without
the upregulation of IL-1β and/or TNF-α. In our opinion,
therefore, excessive mechanical stress may ‘switch on’
these gene expressions as the trigger of OA development
without IL-1β and/or TNF-α stimulation. (Fig. 5) This
notion may coincide with some previous studies using
animals and clinical samples, which showed that IL-1β
and/or TNF-α were not necessary in OA development.51-53
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Graphs showing the effects of dexamethasone on mechanically induced PGE2, interleukin- (IL-)6, and IL-8 proteins and COX-2 gene expressions. The
increased concentrations of a) PGE2 (n = 5), b) IL-6 (n = 5), and c) IL-8 (n = 5) by cyclic compressive loading were suppressed in a dose-dependent manner.
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IL-1β-deficient mice showed development of OA.51 More-
over, the recent clinical study showed that IL-1β and TNF-
α in the synovial fluid of patients with OA were not
significantly higher than that in the control group.52,53

Therefore, it can be explained that mechanical stress
alone is possible to initiate OA development without the
stimulation of proinflammatory cytokines.

In a potential limitation of the present study, we did not
evaluate other intra-articular cells, such as chondrocytes
and meniscal cells. These cells also play an important role
in the development of OA. Also, the intracellular signal
transductions of PGE2, IL-6 and IL-8 (mechanotrans-
duction) have not been described in detail. In a recent
study, mechanotransductions were reported to be related
to the Smad pathway,54,55 mitogen-activated protein
kinase pathway,56-58 or Wnt signaling pathway.59-61 Our
3D culture system may be useful for the explanation of
intracellular mechanotransduction.

In conclusion, cyclic compressive loading on a 3D cul-
tured construct of human fibroblasts upregulated PGE2,
IL-6 and IL-8 proteins and COX-2 and mPGES-1 mRNA lev-
els, without IL-1β and TNF-α stimulation. Further investi-
gation may be useful in revealing the molecular
mechanism of mechanical stress in vivo for a better under-
standing of the pathology and therapy of OA.
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