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Injury to the anterior cruciate ligament (ACL) is one of the most devastating and frequent 
injuries of the knee. Surgical reconstruction is the current standard of care for treatment of 
ACL injuries in active patients. The widespread adoption of ACL reconstruction over primary 
repair was based on early perception of the limited healing capacity of the ACL. Although 
the majority of ACL reconstruction surgeries successfully restore gross joint stability, post-
traumatic osteoarthritis is commonplace following these injuries, even with ACL 
reconstruction. The development of new techniques to limit the long-term clinical sequelae 
associated with ACL reconstruction has been the main focus of research over the past 
decades. The improved knowledge of healing, along with recent advances in tissue 
engineering and regenerative medicine, has resulted in the discovery of novel biologically 
augmented ACL-repair techniques that have satisfactory outcomes in preclinical studies. 
This instructional review provides a summary of the latest advances made in ACL repair.
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Introduction
Dynamic knee stability is affected by both
passive (ligamentous) and active (neuromus-
cular) joint restraints. Among the contribu-
tors to knee joint stability, the anterior
cruciate ligament (ACL) has long been con-
sidered the primary passive restraint to ante-
rior translation of the tibia with respect to the
femur.1,2 Moreover, the ACL contributes to
knee rotational stability in both frontal and
transverse planes due to its specific orienta-
tion.3,4 The ACL has been the focus of many
biomechanical/anatomical studies and is
among the most frequently studied struc-
tures of the human musculoskeletal system
over the past decades.

Injuries to the ACL are one of the most
common and devastating knee injuries
mainly sustained as a result of sports partici-
pation.5 These injuries often result in joint
effusion, altered movement, muscle weak-
ness, reduced functional performance, and
may lead to the loss of an entire season or
more of sports participation among young
athletes.5 ACL injuries are also associated with
long-term clinical sequelae that include
meniscal tears, chondral lesions and an
increased risk of early onset post-traumatic
osteoarthritis (OA).3,6-10

The ACL has long been thought to have
poor healing capacity, with a substantially
high rate of failure (40% to 100%), even after
surgical repair using suture.11-17 The unsatis-
factory outcomes of the ACL primary repair
have led to unanimous abandonment of
suture repair and widespread adoption of
ACL reconstruction. ACL reconstruction has
remained the gold standard of care for ACL
injuries, especially for young individuals and
athletes who aim to return to high-level sport-
ing activities.5,18 However, current surgical
treatment of ACL injury is costly, with variable
outcomes5 and is associated with high risk of
post-traumatic OA within two decades of
injury.9,19 While few athletes are able to
resume sports at the same level without sur-
gery,5 the surgical reconstruction is also not
always successful at returning patients to their
pre-injury activity level.20 Furthermore, those
athletes who successfully return to activity are
at high risk of a second knee injury21 with
notably less favourable outcomes.22

Recent advancements in functional tissue
engineering and regenerative medicine have
resulted in a renewed interest in revisiting
ACL repair. The promising use of novel
biological/tissue engineering techniques,
including growth factors, stem cells and bio-
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scaffolds, has been the focus of current research in ACL
healing and repair. The increased number of recently
published pilot clinical and basic research studies has
prompted our current review of the literature, exploring
the recent knowledge and indications for clinical use of
these biologically enhanced techniques. In this article, we
present the latest research on the biology of ACL healing
and repair supplemented by a brief overview of ACL
injury epidemiology, mechanism and current standard of
care. Future work in this area may lead to the improve-
ment of the current techniques along with development
of novel approaches to treat this critical injury with
enhanced short-term and long-term outcomes.

Search strategy and selection criteria
For the purpose of this literature review, peer-reviewed
journals were consulted and the findings summarised to
provide an understanding of the information gained from
the current literature. Studies were identified by search-
ing the MEDLINE, CINAHL and SPORTDiscus electronic
databases. The last search was undertaken on September
15 2013. The following search terms were used: “Anterior
Cruciate Ligament AND Injury”, “ACL AND Injury”, “Ante-
rior Cruciate Ligament AND Healing”, “ACL and Healing”,
“Anterior Cruciate Ligament AND Repair” and “ACL AND
Repair”. Searches were repeated using the keywords as
MeSH terms as well. 

The search algorithm was intentionally general to max-
imise return. In addition to the online searches, the bibli-
ographies of the included studies were reviewed to
identify additional publications. No date limits were con-
sidered for the publications on ACL healing and repair.
However, literature covering the injury epidemiology,
mechanism and surgical reconstruction were deemed
either seminal published works or publications after
2010. The citations identified from the searches were
combined and duplicates excluded.

All in vivo and in vitro studies that focused on ACL repair
following injury, not reconstruction, were considered. All
titles resulting from the search criteria were reviewed and
those that clearly referred to a topic other than the focus

of current review were excluded. All case reports and
expert opinions were excluded. Abstracts were also
reviewed to confirm inclusion eligibility. Finally, full texts
were obtained for the eligible studies for final review. 

ACL injury epidemiology
The ACL is one of the most frequently injured ligaments of
the knee, with a prevalence estimated to be 1 in 3000 in
the United States (greater than 120 000 cases annually).23

Despite trivial injury incidences in the general popula-
tion, ACL injury frequently affects young, active individu-
als, and females are at a reported two- to ten-fold greater
risk than males playing the same sport (Table I).24-31 High
risk of injury along with the high rate of sports participa-
tion among girls and young women over the last three
decades has led to a rapid rise in ACL injuries in females.
ACL injuries are mainly associated with other concomi-
tant articular injuries, and may result in an increased risk
of early onset post-traumatic OA at ten to 15 years post-
injury (as high as 80%), especially in the presence of con-
comitant meniscal damage.6,7,9,32

In addition to pain, instability and associated long-term
sequelae, ACL injury may affect the athletes’ quality of life
economically as well as socially.7,32 Using a conservative
cost estimate of between USD $17 000 and $25 000 per
patient for surgery and rehabilitation, the estimated cost
for treatment in ACL injured patients in the United States is
over $1.7 billion annually. This estimate does not consider
the resources necessary for non-surgical treatment, or to
treat the long-term complication of post-traumatic OA
associated with both the ACL-injured and ACL-
reconstructed knee.33 Moreover, patients who have suf-
fered an ACL injury face long-term consequences that
include lowered activity levels, high risk of re-injury and
long-term disability due to post-traumatic OA.5-7,9,21,32

Injury mechanism
More than 70% of ACL injuries occur as non-contact
(without a direct blow to the knee joint).2-4 They occur as
a result of landing from a jump and lateral cutting man-
eouvres that may occur in different athletic activities such

Table I. Gender-specific rates of injury to the anterior cruciate ligament based on sports type

Authors Sports
Level of 
competition

ACL injury rate
(female/male)

Renstrom et al30 Basketball Collegiate 3.3
Arendt et al24,25 Basketball Collegiate 4.1
Messina et al28 Basketball High school 3.0
Renstrom et al30 Soccer Collegiate 2.5
Arendt et al24,25 Soccer Collegiate 2.3
Lindenfeld et al27 Soccer Youth 3.0
Stevenson et al31 Alpine skiing High school 3.1
Myklebust et al29 Handball - 5.0
Renstrom et al30 Lacrosse Collegiate 1.4
Renstrom et al30 Ice hockey Collegiate 2
Gwinn et al26 Military training Collegiate 9.7
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as basketball and soccer.24-31 Over the past twenty years,
a myriad of research has examined potential mechanisms
and associated risk factors for ACL injury using in vivo,
ex vivo and in silico techniques.1-4,20,21,24-31,34-36 

Neuromuscular control deficit during dynamic move-
ments has been hypothesised to be the primary cause for
both primary and secondary ACL injury risk (re-injury fol-
lowing ACL reconstruction).5 The deficit in dynamic
active neuromuscular control manifests as excessive joint
loads and leads to detrimental ACL stress/strains and ulti-
mate failure. Non-contact ACL injury mechanisms are
multi-planar in nature, involving the tibiofemoral joint
articulation in all three anatomical planes.3,4,36 Previous
studies have identified combined multi-planar loading
including anterior tibial shear, knee valgus and internal
tibial rotation to be the worst case scenario and primary
mechanism of non-contact ACL injury (Fig. 1).3,4

Treatment options
ACL repair by re-approximating the two ends of the rup-
tured ligament using suture was one of the earliest sug-
gested methods described for treatment of ACL injuries. It
was in early 1900s that Robson37 described the primary
repair of ACL, a technique that was later studied and docu-
mented in detail by O’Donoghue et al.14,38 Feagin11 and
Cabaud et al39,40 were the first to report the long-term out-
comes of primary ACL repair in the 1970s. Feagin11 showed

that the primary repair of ACL failed in over 90% of patients
in a five year follow-up study. These findings were further
backed up by the observations of Sandberg et al15 showing
no difference in outcomes after primary repair versus con-
servative treatment in a randomised controlled trial. The
high rates (40% to 100%) of the ACL failure to heal, even
with surgical repair,11,12,14-17 have led to abandonment of
suture repair and almost universal adoption of ACL recon-
struction for treatment of ACL injuries.

In ACL reconstruction, the torn ACL tissue is removed
from the knee surgically and replaced with an allo- or
autograft tendon taken either from the medial ham-
strings or the middle third of the patellar tendon.
Although ACL reconstruction has become the current
gold standard for restoring the gross stability of a symp-
tomatic ACL-deficient knee, significant problems per-
sist. In the short term, conventional ACL reconstruction
fails to restore the normal joint kinematics and kinet-
ics.41,42 This alteration in joint mechanics has been
mainly associated with non-anatomic ligament inser-
tion (location and geometry) and alignment, loss of tis-
sue neurosensory function (proprioception), graft-
tissue degeneration and neuromuscular deficit.43-45

Many studies have shown significantly greater transla-
tional and rotational laxity of the reconstructed knees
relative to the contralateral uninjured sides, regardless
of the graft type.46-49 Additionally, reconstruction
requires tissue harvest from the knee (autograft), which
is associated with tissue morbidity. Alternatively, using
allografts is associated with high risk of biologic incor-
poration failure and disease transmission in addition to
financial and tissue availability complications. Most
importantly, patients remain at high risk for develop-
ment of early onset OA even after surgical reconstruc-
tion. This risk has been reported to be between 66% and
100%.6,7,9,19 A meta-analysis of 33 clinical follow-up
studies reported that ACL reconstruction was unable to
slow the premature onset of OA following ACL tear.50

Over the last decade, substantial effort has been made
to make the surgical reconstruction more anatomical by
altering tunnel position and introducing the concept of a
double-bundle reconstruction.17,51,52 This evolution in
ACL reconstruction has resulted in an improved joint
translational and rotational stability closer to the intact
knee, compared with conventional, non-anatomic single-
bundle reconstruction.53-56 However, no consensus has
been reached on the improved clinical outcomes of ana-
tomic double-bundle reconstruction over the traditional
single-bundle technique.53,57-62 A recent randomised trial
of 130 patients with a minimum four-year follow-up have
reported that although anatomic double-bundle recon-
struction results in improved IKDC score, it was not supe-
rior to the conventional single-bundle technique in
preventing post-traumatic OA.61

The associated complications with the surgical recon-
struction, despite its undeniably large success, in addition

Fig. 1

Schematic showing the multi-planar loading mechanism of non-contact
injury to the anterior cruciate ligament (Adapted and modified with permis-
sion from Levine et al3).
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to the advent of functional tissue engineering, precipitated
increased interest in bio-enhanced ACL repair as an alterna-
tive to reconstruction.63-65 However, development of a
regenerative method for repair of the torn ACL begs an
enhanced understanding of why the earlier primary ACL
repair was largely unsuccessful. Over the past decade,
researchers set out to understand the mechanisms that
underlie the inability of an injured ACL to heal, a finding
which is in direct contrast to the high healing capacity of
extra-articular connective tissues like the medial collateral
ligament (MCL).63-72 Several factors have been reported to
be responsible for this discrepancy in tissue healing ability
including, but not limited to, the ‘hostile’ environment of
synovial fluid,66,73-75 alterations in the post-injury inflam-
matory response and cell metabolism,67-70,72,76-84 intrinsic
cell deficiencies,71,85-92 different vascular environment,93,94

and load bearing characteristics.4,95

Biologically augmented ACL repair
The improved knowledge of ACL healing characteristics
has helped researchers and clinicians to introduce novel
biologic ACL repair approaches. These alternatives to the
current surgical reconstruction have the potential to pre-
serve the native insertion site and proprioceptive func-
tion, which may in turn lead to more normal joint
mechanics and decreased risk of post-traumatic OA. One
such approach was the ‘healing response technique’ pio-
neered by Steadman et al.96 In this technique, micro-holes
within the femur near the ACL insertion site are created,
leading to blot clot and subsequent haematoma forma-
tion. Ligament healing is then thought to be induced by
the high concentration of the reparative cells near the torn
ends of the ACL as a result of the created haematoma.96-99

This technique has been reported to be successful in mid-
dle-age patients with very proximal ACL tears.96 However,
a recent study by Wasmaier et al100 showed no differences
between patients treated by healing response technique
and patients treated conservatively with regard to
Lysholm and Tegner scores, normalised joint laxity, and
rate of required revision surgery. Recent integration of
advanced functional tissue engineering in the area of ACL
repair has left researchers with multiple novel approaches
to treat ACL injuries with improved outcomes. A brief over-
view of these methods follows.
Cell therapy. Cell therapy using mesenchymal progenitor
cells (MPCs) or mesenchymal stem cells (MSCs) has been
widely studied in vitro and in preclinical studies within the
area of sports medicine research.101-103 MSCs harvested
from mesenchymal tissues (i.e., bone marrow) can differ-
entiate into various cell types (i.e., fibroblasts) required to
regenerate different tissues such as bone, cartilage, ten-
don, ligament and fat.104-111 In a rat model of partial ACL
tear, Kanaya et al112 showed that intra-articular injection of
MSCs resulted in a healed ligament with superior histolog-
ical scores and greater failure load compared with non-
treated control knees. Lim et al113 and Soon et al114 have

shown similar improved biomechanics in rabbit models of
ACL reconstruction using autografts and allografts, respec-
tively, all enhanced by the application of MSCs.

In a recent study, Oe et al115 used intra-articular injec-
tion of either fresh bone marrow cells (BMC) or cultured
MSCs at one week after ACL transection in a rat model.
They showed that the donor cells were located within the
wound site and ACL exhibited almost normal histology,
with more mature spindle cells with higher levels of trans-
forming growth factor (TGF-β) in the BMC group. They
concluded that the direct intra-articular BMC injection is
an effective solution for the treatment of partial ACL
tears,115 which was in line with previous findings of
Kanaya et al.112 These findings are encouraging consider-
ing the potential of MSCs to carry and deliver therapeutic
molecules in addition to the positive role of MSCs in the
healing of ligaments. Despite the advantages of stem cell-
based therapies, unresolved challenges exist in optimis-
ing the MSC applications in ACL repair. One such
challenge is the development of proper methods to effec-
tively differentiate these multi-pluripotent cells into spe-
cific cell types required to enhance tissue repair. Another
concern is the delivery and maintenance of the stem cells
within the wound site, which underscores the need for
further research in this field.
Gene transfer and gene therapy. Gene transfer is a
recent promising strategy to modulate durably the appli-
cation of various therapeutic factors essential to the heal-
ing of injured tissues such as ligaments. Gene transfer in
ligaments mainly occurs using nonviral gene delivery vec-
tors or vectors derived from viruses with natural entry
pathways in the cell (adenoviruses, lentiviruses/
retroviruses) in order to alter tissue endogenous protein
synthesis by mediating certain gene expression.116-124

Such gene-based approaches may have the potential to
modulate the biochemical changes following an ACL
injury such as variations in collagen expression, the
wound contractile α–smooth muscle actin (α-SMA) mark-
ers, and nuclear factor–kB (NF-kB) markers.119,125,126 Hil-
debrand et al127 tested the possibility of gene transfer to
normal and ACL ruptured knees in a rabbit model. They
concluded that adenoviral vectors are able to express
more efficiently than retroviral vectors in ACL cells and can
lead to a considerably long period of gene expression in
vivo (six weeks).

In a series of ex vivo and in vitro studies, Pascher et al122

confirmed the ability of vector-laden hydrogels in in situ
gene delivery to the injury site for potential biological
repair of the ACL. They showed increased cellularisation
and collagen (I and III) deposition by in situ transfer of
TGF-β1 using an adenoviral vector in a collagen hydrogel
placed between the torn ends of the ACL.122 The same
authors further demonstrated increased deposition of
collagen (I and III), elastin, tenascin, and vimentin
through in situ transfer of insulin-like growth factor-1
(IGF-1) cDNA by an adenovirus vector in the same
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model.123 Most recently, Madry et al119 tested the
enhanced healing of the human ACL by over expression
of fibroblast growth factor-2 (FGF-2) via direct recombi-
nant adeno-associated virus (rAAV) vector–mediated
gene transfer. They showed that stable FGF-2 expression
using rAAV resulted in remarkable decrease in ACL lesions
mainly due to increased expression of α-SMA, ligament-
specific transcription factor scleraxis, and NF-kB for colla-
gen proliferation and deposition.119

Despite these advantages, there are several issues that
need to be considered during gene therapy. The loss or
decrease of expression of the transferred gene after sev-
eral weeks, especially in adenoviral vectors, is one of the
major and most frequent challenges in gene therapy.128

Safety is also a major concern using this technique, which
can lead to high risks of side effects including mutagene-
sis.129 Moreover, abnormal cell growth, toxicity under
chronic over-expression of growth factors, and develop-
ment of any malignancy are other possible side effects
associated with gene-modified cell therapy. As a result
this technique is a current topic of research to identify the
ideal gene vectors and further optimise the current meth-
ods in an effort to overcome the difficulties associated
with viral gene therapy. 
Application of growth factors. The use of growth factors
has gained a lot of traction in treatment of soft-tissue inju-
ries since the late 1990s. A wide range of growth factors,
including insulin-like growth factor (IGF), TGF-β, platelet-
derived growth factor (PDGF), vascular endothelial growth
factor (VEGF), fibroblast growth factor (FGF) and nerve
growth factor (NGF) have been used previously to improve
ligamentous and tendon tissue repair.78,130-140 They have
shown to be able to regulate and improve the cellular
activities and proliferation, extra-cellular matrix (ECM)
deposition, and influence the differentiation of MSCs into
fibroblasts to repair the torn ligaments. In particular, these
growth factors have exhibited positive effects on various
biological processes needed to improve ACL healing.

Early in vitro studies by Marui et al141 demonstrated that
the application of TGF- β1 resulted in increased collagen
synthesis up to 1.5 times greater than controls in both MCL
and ACL fibroblasts. Kobayashi et al142 reported the posi-
tive effect of basic-FGF (bFGF) in improved ACL tissue heal-
ing with increased vascularity compared with the control
in a canine model. More recently, Kondo et al132 studied
the effect of TGF- β1 in an in vivo model of ACL injury in rab-
bits. They showed significant improvement of biomechan-
ical and histological healing properties of injured ACLs
treated with TGF-β1 compared with controls.

In addition to the mentioned growth factors, the use of
platelet-rich-plasma (PRP), which contains a multitude of
growth factors, has been the centre of attention as a
novel, non-invasive treatment for sports related
injuries.143-149 PRP is a simple, efficient method of obtain-
ing a high concentration of growth factors through
separation of platelets from autologous blood. Platelets

are the first cells reaching the injury site and are a sub-
stantial reservoir of critical growth factors and signaling
molecules, including leukocyte-derived catabolic cyto-
kines and fibrinogen.150,151 This combination of bio-active
agents can mediate the tissue healing process, following
an injury through both the inflammatory and remodeling
phases.146,150,151 Platelets are involved in homeostasis,
aggregation and clot formation steps, which finally lead
to enhanced tissue healing.150 This is done by the release
of PDGF, TGF-β1, VEGF, bFGF and epidermal growth factor
(EGF) through degranulation of alpha granules.144,145

Among these growth factors, PDGF and TGF-β1 have
been reported to be the most critical modulators in the
healing process by contributing to increased fibroblast
proliferation and collagen production.144

Despite the large number of research studies con-
ducted on the role of PRP treatment on ACL reconstruc-
tion,148,152-156 the use of PRP in ACL healing and repair is
not as well considered. In a series of in vivo large animal
studies, Murray et al157-160 have reported improved ACL
healing using a collagen-platelet hydrogel in an ACL cen-
tral defect model. They demonstrated that the presence
of collagen-platelet hydrogel in the wound site can result
in release of growth factors with similar spatial and tem-
poral sequence as healing extra-articular tissue. They fur-
ther reported significant increases in tissue formation and
mechanical properties following biologically augmented
primary ACL repair.157-160

Despite these advantages, there are concerns regard-
ing the optimised use of growth factors. One of the major
concerns is the short life span of these bio-active agents,
which have limited their efficacy. Delivery and mainte-
nance of the growth factors within the wound site is
another challenge using this technique for treatment of
soft-tissue injuries. Therefore, safe and reproducible sys-
tems that allow sustained delivery of growth factors to
the injury site are essential.
Use of bio-scaffolds. A wide range of synthetic and bio-
logic-based scaffolds made from alginate, chitosan, colla-
gen or hyaluronic acid have been used in functional tissue
engineering and regenerative medicine.161,162 ACL tears
have been previously treated with synthetic scaffolds
loaded with growth factors142 and also with hyaluronic
acid.163,164 Wiig et al164 reported improved healing of a
ACL central defect using intra-articular injection of hyal-
uronic acid in a rabbit model. They showed that the
group treated with hyaluronic acid showed greater angio-
genic response with increased amount of reproduced
type III collagen. However, these techniques are associ-
ated with critical challenges such as problems with
implant–host integration, cell survival after transplanta-
tion, and short-time degradation. Alternatively, the use of
collagen-based scaffolds has shown to be more effective.
ACL fibroblasts have been previously shown to effectively
attach, proliferate and express collagen on collage-based
scaffolds.165
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Porcine small intestinal submucosa (SIS) was among
the first scaffolds used to enhance the regeneration and
repair of ligaments and tendons.166-171 SIS is a collagen
based (90% of dry weight) bio-absorbable scaffold
which contains a small number of cytokines and growth
factors such as FGF and TGF-β.170 In addition to the col-
lagenous structure, which works as a provisional scaf-
fold, it can also deliver the essential supplies (i.e., FGF-2,
TGF-β, VEGF and PDGF) needed for tissue healing.166

Using a goat stifle joint model of ACL injury,
Fisher et al172 reported significant improvement in tissue
mechanical and histological properties using a primary
repair technique supplemented with SIS bio-scaffold
and hydrogel. Using a tissue-engineered collagen-I scaf-
fold, Robayo et al64 demonstrated improved ACL fibro-
blasts activity (i.e., migration) in vitro supporting the
collagen-based scaffolds as proper bedding for ACL tis-
sue regeneration.

Recent in vivo work by Fleming et al173 reported no sig-
nificant improvement of suture repair when supplemented
with a collagen scaffold alone used for complete ACL tears
in a porcine model. However, by combining a collagen
scaffold with autologous platelets, Murray et al75,158,174

demonstrated significantly improved ACL repair outcomes
in a series of large animal studies. They showed superior
tissue mechanical properties using primary repair aug-
mented with collagen-PRP hydrogel, compared with
suture repair alone.158 It was further reported that the aug-
mented ACL repair can result in enhanced tissue properties

similar to ACL reconstruction, the current gold standard of
treatment.174 Additional studies have also now demon-
strated that the combination of an ECM-based collagen
scaffold and PRP is substantially more effective than the
application of each of these factors alone.173,175 The mech-
anism behind this remains unclear, but it may be due to a
synergic effect between the collagen, PRP and other ECM
molecules.

A new paradigm in ACL repair
The low capacity of the ACL to heal compared with other
extra-articular tissues, such as the MCL, has long been
attributed to the intrinsic differences in cell behaviour and
insufficient blood supply following injury.71,85,86,88,90,92,94

However, extensive in vitro cell culture and in vivo histo-
logical and immunohistochemical studies of the ACL and
MCL have revealed that both ligaments have a compara-
ble proliferative vascular and neurogenic reaction to
injury.66,75,176-180 It has also been shown that, similar to
the MCL, collagen production continues within the ACL
up to one year post-injury.179 However, germinal obser-
vations showed that the provisional scaffold (fibrin-plate-
let clot) found within the wound site of extra-articular
ligaments was missing in the ACL (Fig. 2).178 The preven-
tion of clot formation is mainly due to the continuous
flow of the synovial fluid within the knee joint, dispersing
the blood as a haemarthrosis.178 It was further demon-
strated that this lack of provisional scaffold leads to a
decreased presence of critical ECM proteins and cytokines

Fig. 2

Diagrams showing the differences in intrinsic healing response of the anterior cruciate ligament (ACL; top) and medial collateral ligament (MCL; bottom), high-
lighting the lack of provisional scaffold (blood clot) formation within the ACL wound site as the key mechanism for ACL healing failure (reproduced with per-
mission from Murray and Fleming63).
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such as fibrinogen, fibronectin, PDGF-A, TGF-β1, FGF-2,
and von Willebrand’s factor (vWF) within the ACL wound
site (Fig. 3).75,159 

In order to test the hypothesis that the missing provi-
sional scaffold was a key mechanism behind the failure of

the ACL to heal, a collagen-based scaffold has been used to
fill the gap between the two ends of the torn ligament.63

This bio-active scaffold could then be used as a carrier for
cells, growth factors and enzymes required to optimise tis-
sue healing. In the first in vivo studies, platelets maintained
with their physiological plasma were placed within the col-
lagen-based scaffold, and the loaded scaffold used to
repair torn ACL using multiple established large animal
models.157-160,174,181-183 These studies further demon-
strated the improved biological and mechanical healing of
the ACL using this novel technique (bio-enhanced repair)
(Fig. 4). In a recent randomised trial in a large animal
model, the biomechanical outcome of bio-enhanced ACL
repair was found to be equal to that of ACL reconstruction
(Fig. 5).174 More importantly, while 80% of the knees
treated with ACL reconstruction developed post-traumatic
OA by one year post-operatively, OA was not seen in those
knees treated with bio-enhanced repair within the same
time period (Fig. 6).182 

Conclusion
A successful ACL repair can theoretically provide the
patient with multiple advantages over surgical reconstruc-
tion, including preservation of the proprioceptive function
of the ligament and the complex ligament insertion sites.

Fig. 3

Representative photomicrographs of patellar ligament wounds (extra-articular, EA), untreated anterior cruciate ligament (ACL) wounds (intra-articular, IA) and
treated ACL with collagen-platelet scaffold (IA Tx) at 21 days after injury (10x). Treated ACLs show similar distribution of protein presence as the patellar liga-
ment. The untreated ACL wounds remain with almost no substratum (PDGF-A: platelet-derived growth factor; TGF-β: transforming growth factor; FGF:
fibroblast growth factor) (adapted and modified with permission from Murray et al75).

Bio-enhanced
ACL Repair 

Fig. 4

Schematic of bio-enhanced anterior cruciate ligament (ACL) repair method
(adapted and modified with permission from Murray and Fleming182).
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However, previously reported high failure incidences of
primary repair and the relative robustness of ACL recon-
struction led the clinical switch to use of a graft to replace,
rather than repair, the ACL. Recent advances in the area of
tissue engineering and regenerative medicine coupled
with an improved understanding of the requirements for
ACL healing, has led to the emergence of novel biologically
augmented ACL repair techniques. Despite being in their
infancy, these methods have resulted in repeated stepwise
improvements in ACL repair and become a promising
future candidate for ACL injury treatment. One such
approach, bio-enhanced repair, has shown comparable
structural and biomechanical outcomes with the current
gold standard of treatment, ACL reconstruction. Bio-
enhanced repair using a collagen-based scaffold and auto-
logous blood has also resulted in significant decreases in
risk of post-traumatic OA, which makes it the first and so far
only possible ACL injury treatment with the potential to
lower the risk of OA after an ACL injury. Despite promising

results obtained from in vitro and in vivo animal studies,
well-controlled human trials are needed to assure the ulti-
mate efficacy of these novel approaches. Future work
should focus on further refinement of these techniques in
an effort to improve the outcomes, along with successful
translation to humans. 

References
1. Butler DL, Noyes FR, Grood ES. Ligamentous restraints to anterior-posterior

drawer in the human knee: a biomechanical study. J Bone Joint Surg [Am] 1980;62-
A:259–270.

2. Kiapour AM, Wordeman SC, Paterno MV, et al. Diagnostic value of knee arthrom-
etry in the prediction of anterior cruciate ligament strain during landing. Am J Sports
Med 2013;Epub.

3. Levine JW, Kiapour AM, Quatman CE, et al. Clinically relevant injury patterns
after an anterior cruciate ligament injury provide insight into injury mechanisms. Am
J Sports Med 2013;41:385–395.

4. Quatman CE, Kiapour AM, Demetropoulos CK, et al. Preferential loading of the
ACL compared with the MCL during landing: a novel in sim approach yields the mul-
tiplanar mechanism of dynamic valgus during ACL injuries. Am J Sports Med
2014;42:177–186.

5. Hewett TE, Di Stasi SL, Myer GD. Current concepts for injury prevention in athletes
after anterior cruciate ligament reconstruction. Am J Sports Med 2013;41:216–224.

6. Chu CR, Beynnon BD, Buckwalter JA, et al. Closing the gap between bench and
bedside research for early arthritis therapies (EARTH): report from the AOSSM/NIH U-
13 Post-Joint Injury Osteoarthritis Conference II. Am J Sports Med 2011;39:1569–
1578.

7. Lohmander LS, Ostenberg A, Englund M, Roos H. High prevalence of knee osteo-
arthritis, pain, and functional limitations in female soccer players twelve years after
anterior cruciate ligament injury. Arthritis Rheum 2004;50:3145–3152.

8. Nebelung W, Wuschech H. Thirty-five years of follow-up of anterior cruciate liga-
ment-deficient knees in high-level athletes. Arthroscopy 2005;21:696–702.

9. von Porat A, Roos EM, Roos H. High prevalence of osteoarthritis 14 years after an
anterior cruciate ligament tear in male soccer players: a study of radiographic and
patient relevant outcomes. Ann Rheum Dis 2004;63:269–273.

10. Quatman CE, Kiapour A, Myer GD, et al. Cartilage pressure distributions provide
a footprint to define female anterior cruciate ligament injury mechanisms. Am J
Sports Med 2011;39:1706–1713.

11. Feagin JA Jr, Curl WW. Isolated tear of the anterior cruciate ligament: 5-year fol-
low-up study. Am J Sports Med 1976;4:95–100.

12. Kaplan N, Wickiewicz TL, Warren RF. Primary surgical treatment of anterior cru-
ciate ligament ruptures: a long-term follow-up study. Am J Sports Med 1990;18:354–
358.

13. Marshall JL, Warren RF, Wickiewicz TL, Reider B. The anterior cruciate liga-
ment: a technique of repair and reconstruction. Clin Orthop Relat Res 1979;143:97–
106.

14. O’Donoghue DH, Frank GR, Jeter GL, et al. Repair and reconstruction of the ante-
rior cruciate ligament in dogs: factors influencing long-term results. J Bone Joint Surg
[Am] 1971;53-A:710–718.

15. Sandberg R, Balkfors B, Nilsson B, Westlin N. Operative versus non-operative
treatment of recent injuries to the ligaments of the knee: a prospective randomized
study. J Bone Joint Surg [Am] 1987;69-A:1120–1126.

16. Sherman MF, Bonamo JR. Primary repair of the anterior cruciate ligament. Clin
Sports Med 1988;7:739–750.

17. Strand T, Molster A, Hordvik M, Krukhaug Y. Long-term follow-up after primary
repair of the anterior cruciate ligament: clinical and radiological evaluation 15-23
years postoperatively. Arch Orthop Trauma Surg 2005;125:217–221.

18. Musahl V, Becker R, Fu FH, Karlsson J. New trends in ACL research. Knee Surg
Sports Traumatol Arthrosc 2011;19(Suppl 1):S1–S3.

19. Murray JR, Lindh AM, Hogan NA, et al. Does anterior cruciate ligament recon-
struction lead to degenerative disease?: thirteen-year results after bone-patellar ten-
don-bone autograft. Am J Sports Med 2012;40:404–413.

20. Ardern CL, Webster KE, Taylor NF, Feller JA. Return to the preinjury level of com-
petitive sport after anterior cruciate ligament reconstruction surgery: two-thirds of
patients have not returned by 12 months after surgery. Am J Sports Med
2011;39:538–543.

21. Shelbourne KD, Gray T, Haro M. Incidence of subsequent injury to either knee
within 5 years after anterior cruciate ligament reconstruction with patellar tendon
autograft. Am J Sports Med 2009;37:246–251.

22. Spindler KP, Huston LJ, Wright RW, et al. The prognosis and predictors of sports
function and activity at minimum 6 years after anterior cruciate ligament reconstruc-
tion: a population cohort study. Am J Sports Med 2011;39:348–359.

0

10

20

30

40

50

Yield load Max load Linear stiffness

In
ta

ct
 A

C
L 

(%
)

ACLR
Repair
Tx

*
* *

Fig. 5

Bar chart showing identical mechanical properties of bio-enhanced
repaired anterior cruciate ligament (ACL) (Repair) compared with the
surgically reconstructed samples (ACLR) (p > 0.6 for all comparisons),
with significantly lower mechanical properties (*) within the untreated
ACL rupture group (Tx) (reproduced with permission from Murray and
Fleming63).

Fig. 6

Photographs showing the distal femoral cartilage at one year after a) an
untreated anterior cruciate ligament (ACL) rupture, b) after conventional
ACL reconstruction, and c) bio-enhanced ACL repair. Note the damage to
the medial femoral condyle in the untreated and ACL-reconstructed knee
(black arrows). No damage to the medial femoral condyle in the bio-
enhanced ACL-repair knee (white arrow) was observed (adapted and mod-
ified with permission from Murray and Fleming 182).
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