

Supplementary Material

10.1302/2046-3758.129.BJR-2023-0118.R1

Table i. Search strategy used in each database searched.

Database	Search strategy	Articles
		retrieved
PubMed	(("Mendelian Randomization Analysis"[Mesh]) OR (((((Analysis, Mendelian Randomization[Title/Abstract]) OR (Mendelian	102
	Randomization[Title/Abstract])) OR (Genetic Instrumental*[Title/Abstract])) OR (Genetic Instrumental Variable*[Title/Abstract])) OR	
	(genetic instrument*[Title/Abstract]))) AND (("Arthritis, Rheumatoid"[Mesh]) OR (Rheumatoid Arthritis[Title/Abstract]))	
Web of	#1. (((((TS=(Mendelian Randomization Analysis)) OR TS=(Analysis, Mendelian Randomization)) OR TS=(Mendelian Randomization)) OR	250
Science	TS=(Genetic Instrumental)) OR TS=(Genetic Instrumental Variable)) OR TS=(genetic instrument)	
	#2. (TS=(Arthritis, Rheumatoid)) OR TS=(Rheumatoid Arthritis)	
	#3. #2 AND #1	
Embase	#1. 'mendelian randomization analysis'/exp	165
	#2. 'rheumatoid arthritis'/exp	
	#3. 'analysis, mendelian randomization':ab,ti OR 'mendelian randomization':ab,ti OR 'genetic instrumental':ab,ti OR 'genetic	
	instrumental variable':ab,ti OR 'genetic instrument':ab,ti	
	#4. 'rheumatoid arthritis':ab,ti	
	#5. #1 OR #3	
	#6. #2 OR #4	
	#7. #5 AND #6	

Table ii. Quality Assessment tool conducted based on adherence to the Strengthening the Reporting of Mendelian Randomization Studies (STROBE-MR) Guidelines for all 19 studies included in the meta-analysis. Each item is scored between 0 and 1 for each criterion to yield a total score. Upon conversion of the quality assessment score to a percentage, scores of < 75%, 75 to 85%, and > 85% were considered to indicate high, medium, and low risk of bias, respectively.

Study and year of publication	1. Title & abstract	2. Background & objective	3. Design & data sources	4. Study sample	5. Selection of genetic variants	6. Primary analysis	7. Sensitivity analyses	8. Software and pre- registration	9. Data presentati on	10. Limitations, interpretatio n	Total score (out of 10)	% score*
Martin et al, 2022 ¹	1	1	1	1	0.5	1	0.5	1	1	1	9	90
Tang et al, 2021 ²	1	1	1	1	1	1	1	1	1	0.5	9.5	95
Bae & Lee, 2019 ³	1	1	1	1	1	1	1	1	1	1	10	100
Zhao et al, 2022⁴	1	1	1	1	1	1	1	1	1	0.5	9.5	95
Qian et al, 2020⁵	1	1	1	1	1	1	0.5	1	0.5	1	9	90
Jiang et al, 2021 ⁶	1	0.5	1	1	1	1	1	1	0.5	0.5	8.5	85
Bae & Lee, 2019 ⁷	1	1	1	1	1	1	1	1	1	1	10	100
Pu et al, 2022 ⁸	1	1	1	1	1	1	0.5	1	1	1	9.5	95
Bae & Lee, 2018 ⁹	1	0.5	1	1	1	1	1	0	1	1	8.5	85
Huang et al, 2021 ¹⁰	1	1	1	1	1	1	1	1	1	1	10	100
Bae & Lee, 2019 ¹¹	1	1	1	1	1	1	1	0.5	1	1	9.5	95
Yuan et al, 2021 ¹²	0.5	0.5	1	1	1	1	0.5	1	1	1	8.5	85
Zhou et al, 2021 ¹³	1	1	1	1	1	1	0.5	1	1	1	9.5	95
Cheng et al, 2019 ¹⁴	1	1	1	1	1	1	0.5	1	1	1	9.5	95
Yuan & Larsson, 2020 ¹⁵	1	1	1	1	1	1	0.5	0.5	1	1	9	90
Ye et al, 2021 ¹⁶	1	1	1	1	1	1	0.5	1	0.5	1	9	90
Bae & Lee, 2020 ¹⁷	1	0.5	1	1	1	1	1	0	1	1	8.5	85
Yin et al, 2022 ¹⁸	1	1	1	1	1	1	1	1	1	1	10	100
Wu et al, 2021 ¹⁹	1	1	1	1	1	0.5	0.5	1	1	1	9	90

*Study quality was assessed using a modified version of the Strengthening the Reporting of Observational Studies in Epidemiology using Mendelian Randomization (STROBE-MR) guidelines.^{20,21} A score was given if the following were satisfied:

1. The title and/or abstract indicate Mendelian randomization (MR) design.

- 2. The background and rationale for the study and the objective are clearly reported.
- 3. The study design and data source(s) used are clearly reported.
- 4. The study sample, including the number of cases and non-cases or total number of participants included in the analysis, is reported.
- 5. The selection of genetic variants as well as the number of genetic variants used in the MR analysis are reported.
- 6. The statistical methods used for the primary analysis and the exposure unit are reported.
- 7. Sensitivity analyses based on robust MR methods (e.g. the weighted median and/or MR-Egger regression) were conducted and reported.
- 8. The software used for the MR analysis is reported.
- 9. Relative risk (odds ratio) estimates are clearly presented in tables or figures.
- 10. The limitations of the study are discussed and the overall interpretation of results considering the objective and limitations is sound.

Table iii. Mendelian randomization studies included in the meta-analyses of genetically predicted obesity-related indicators, life environment, serum minerals, and disease status in relation to rheumatoid arthritis.

Phenotype	Consortium (X)	Cases, n	SNPs, n	OR	LB	UB	p-value	p-value for MR-Egger intercept*	p-value for heterogeneit y analysis	Unit	Study, yr
Obesity-related											
BMI	IEU	339,224	N/A	1.20	0.95	1.52	0.137	0.112	0.005	4.2 kg/m ²	Martin et al, 2022 ¹
BMI	IEU	339,224	N/A	1.27	0.99	1.63	0.062	0.736	0.357	4.2 kg/m ²	Martin et al, 2022 ¹
BMI	IEU	339,224	N/A	1.40	1.15	1.70	0.001	N/A	N/A	4.2 kg/m ²	Martin et al, 2022 ¹
BMI	UK Biobank	806,810	696	1.27	1.12	1.45	2.400 × 10 ⁻⁴	0.550	<0.001	4.2 kg/m ²	Tang et al, 2021 ²
BMI	IEU	322,154	68	1.03	1.03	1.03	0.033	0.736	0.512	4.2 kg/m ²	Bae & Lee, 2019 ³
BMI	IEU	766,345	463	1.14	0.95	1.36	0.160	0.741	3.21×10 ⁻⁴⁴	4.2 kg/m ²	Zhao et al, 2022 ⁴
BMI	Meta-analysis	2,234,53 3		1.25	1.16	1.36	< 1.00 × 10 ⁻⁵				
Body fat percentage	UK Biobank	442,278	N/A	1.40	1.15	1.71	0.001	6.00×10 ⁻⁴⁸	0.933	SD	Martin et al, 2022 ¹
Body fat percentage	UK Biobank	442,278	N/A	1.56	1.30	1.87	1.00 × 10 ⁻⁶	0.0002	0.326	SD	Martin et al, 2022 ¹
Body fat percentage	UK Biobank	442,278	N/A	1.77	1.56	2.00	4.00 × 10 ⁻ 18	N/A	N/A	SD	Martin et al, 2022 ¹
Body fat percentage	Meta-analysis	442,278		1.63	1.49	1.79	< 1.00 × 10 ⁻⁵				
Favourable adiposity	Martin et al, GWAS ²²	442,278	N/A	2.06	1.08	3.92	0.034	0.011	0.029	SD	Martin et al, 2022 ¹
Favourable adiposity	Martin et al, GWAS ²²	442,278	N/A	1.85	0.97	3.53	0.069	0.389	0.168	SD	Martin et al, 2022 ¹
Favourable adiposity	Martin et al, GWAS ²²	442,278	N/A	1.61	1.01	2.56	0.055	N/A	N/A	SD	Martin et al, 2022 ¹
Favourable adiposity	Meta-analysis	442,278		1.78	1.28	2.46	6.00 × 10 ⁻⁴				
Unfavourable adiposity	Martin et al, GWAS ²²	442,278	N/A	1.43	0.89	2.32	0.152	0.767	1.00×10 ⁻⁴	SD	Martin et al, 2022 ¹
Unfavourable adiposity	Martin et al, GWAS ²²	442,278	N/A	1.82	1.11	2.96	0.023	0.658	0.062	SD	Martin et al, 2022 ¹
Unfavourable adiposity	Martin et al, GWAS ²²	442,278	N/A	1.66	1.19	2.31	0.005	N/A	N/A	SD	Martin et al, 2022 ¹

Unfavourable adiposity	Meta-analysis	442,278		1.63	1.29	2.07	< 1.00 × 10 ⁻⁴				
Life environment											
Lifetime smoking	UK Biobank	462,690	121	1.55	1.13	2.14	0.007	0.645	N/A	SD	Qian et al, 2020 ⁵
Lifetime smoking	UK Biobank	462,690	105	2.13	1.25	3.62	0.005	0.394	2.68×10 ⁻⁷	SD	Zhao et al, 2022 ⁴
Lifetime smoking	Meta-analysis	462,690		1.68	1.28	2.21	2.00 × 10 ⁻⁴				
Alcoholic drinks per week	IEU	941,280	80	0.85	0.56	1.29	0.450	0.080	N/A	1 cup/wk	Jiang et al, 2021 ⁶
Alcoholic drinks per week	IEU	335,394	25	1.03	0.59	1.80	0.908	N/A	N/A	1 cup/wk	Zhao et al, 2022 ⁴
Alcoholic drinks per week	Meta-analysis	1,276,67 4		0.91	0.65	1.27	0.590				
Coffee intake	UK Biobank	428,860	27	1.47	0.79	2.75	0.218	0.245	0.049	1 cup/day	Pu et al, 2022 ⁸
Coffee intake	Coffee and Caffeine Genetics Consortium; Amin et al, GWAS ²³	109,638	3	2.16	1.25	3.73	0.006	0.451	0.573	1 cup/day	Bae & Lee, 2018 ⁹
Coffee intake	Meta-analysis	538,498		1.82	1.21	2.74	0.004				
Educational attainment	IEU	1,131,88 1	373	0.42	0.34	0.52	1.78 × 10 ⁻ 14	0.030	0.340	4.2 yrs	Huang et al2021 ¹⁰
Educational attainment	IEU	1,131,88 1	659	0.50	0.41	0.60	1.150 × 10 ⁻¹³	0.281	N/A	4.2 yrs	Yuan et al, 2021 ¹²
Educational attainment	IEU	766,345	1005	0.37	0.32	0.45	6.200 × 10 ⁻²⁹	0.149	1.87×10 ⁻⁷³	4.2 yrs	Zhao et al, 2022 ⁴
Educational attainment	Meta-analysis	1,898,22 6		0.43	0.36	0.51	< 1.00 × 10 ⁻⁵				
Serum minerals											
Serum Ca	O'Seaghdha et al, GWAS ²⁴	61,079	8	0.73	0.46	1.14	0.160	0.985	0.876	SD	Zhou et al, 2021 ¹³
Serum Ca	O'Seaghdha et al, GWAS ²⁴	39,400	6	1.83	0.99	3.41	0.055	0.590	0.638	SD	Cheng et al, 2019 ¹⁴
Serum Ca	Meta-analysis	100,479		1.13	0.46	2.78	0.790				
Serum iron	IEU	48,972	3	0.79	0.65	0.94	0.010	0.712	0.096	SD	Yuan et al, 2020 ¹⁵
Serum iron	IEU	48,972	3	0.98	0.77	1.25	0.850	0.517	0.220	SD	Zhou et al, 2021 ¹³
Serum iron	IEU	48,972	11	1.01	0.82	1.25	0.913	0.150	6.84× 10 ⁻⁶	SD	Cheng et al, 2019 ¹⁴
Serum iron	Meta-analysis	48,972		0.91	0.80	1.03	0.130				
Serum copper	IEU	2,603	2	1.01	0.84	1.23	0.870	N/A	0.628	SD	Zhou et al, 2021 ¹³
Serum copper	IEU	2,603	2	0.94	0.77	1.16	0.579	N/A	0.130	SD	Cheng et al, 2019 ¹⁴
Serum copper	Meta-analysis	2,603		0.98	0.85	1.12	0.740				
Serum magnesium	Meyer et al, GWAS ²⁵	23,829	6	0.96	0.56	1.65	0.870	0.140	0.158	SD	Zhou et al, 2021 ¹³

Serum magnesium	International CHARGE Alliance	15,366	4	3.07	0.16	58.62	0.457	N/A	0.044	SD	Cheng et al, 2019 ¹⁴
Serum magnesium	Meta-analysis	39,195		1.00	0.59	1.69	0.990				
Serum zinc	IEU	2603	2	0.96	0.75	1.01	0.750	NA	0.977	SD	Zhou et al.2021 ¹³
Serum zinc	IEU	2603	2	1.07	0.94	1.22	0.328	NA	0.460	SD	Cheng et al.2019 ¹⁴
Serum zinc	Meta-analysis	2603		1.05	0.93	1.17	0.450				
Serum selenium	CARDIA, JoCo, NHS, HPFS	9639	11	1.03	0.97	1.10	0.359	0.611	0.757	SD	Ye et al.2021 ¹⁶
Serum selenium	QIMR and ALSPAC	5477	2	0.98	0.86	1.11	0.733	NA	NA	SD	Ye et al.2021 ¹⁶
Serum selenium	Meta-analysis	15116		1.02	0.97	1.08	0.450				
Comorbidity											
Chronic periodontitis	SHIP GWAS SHIP-TREND cohorts*	4032	20	1.02	0.99	1.05	0.270	0.500	0.790	NA	Yin et al.2022 ¹⁸
Chronic periodontitis	Teumer et al. GWAS ²⁶	3915	7	1.18	1.01	1.38	0.035	0.078	□ 0.001	NA	Bae & Lee.2020 ¹⁷
Chronic periodontitis	Meta-analysis	7947		1.08	0.94	1.24	0.300				
Graves' Disease	BBJ	212453	12	1.30	0.94	1.80	0.112	0.663	0.120	NA	Wu et al.2021 ¹⁹
Graves' Disease	BBJ	212453	13	1.35	0.95	1.94	0.097	0.702	0.130	NA	Wu et al.2021 ¹⁹
Graves' Disease	Meta-analysis	212453		1.32	1.04	1.68	0.020				

*SHIP-TREND cohorts comprise the two independent cohorts SHIP (recruitment 1997 to 2001) and SHIP-TREND (recruitment 2008 to 2012) with re-evaluations in fiveyear intervals.

ALSPAC, Avon Longitudinal Study of Parents and Children; BBJ, BioBank Japan; Ca, calcium; CARDIA, Coronary Artery Risk Development in Young Adults; CHARGE, Cohorts for Heart and Aging Research in Genomic Epidemiology; GWAS, genome-wide association studies; HPFS, Health Professionals Follow-up Study; IEU, IEU OpenGWAS project; JoCo, Johnston County Osteoarthritis Project; LB, low bound; MR, Mendelian randomization; NHS, Nurses' Health Study; N/A, not available; OR, odds ratio; QIMR, QIMR Berghofer Medical Research Institute; SHIP, Study of Health in Pomerania; SNP, single nucleotide polymorphism; UB, up bound.

Fig a. Funnel plot of the included studies on obesity-related indicators. BFP, body fat percentage; FA, favourable adiposity; OR, odds ratio; SE, standard error; UFA, unfavourable adiposity.

				Odds Ratio			(Odds Rati	0	
Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Fixed, 95% CI	P value		IV,	Fixed, 95	% CI	
Bae et al. 2019	0.0296	0.001	99.9%	1.03 [1.03, 1.03]	0.033					
Martin et al. 2022	0.1823	0.1192	0.0%	1.20 [0.95, 1.52]	0.137				•	
Martin et al. 2022	0.239	0.1271	0.0%	1.27 [0.99, 1.63]	0.062					
Martin et al. 2022	0.3365	0.1004	0.0%	1.40 [1.15, 1.70]	0.001			-		
Tang et al. 2021	0.239	0.0641	0.0%	1.27 [1.12, 1.44]	2.400×10-	4		- -		
Zhao et al. 2022	0.1293	0.0921	0.0%	1.14 [0.95, 1.36]	0.160			+-		
Total (95% CI)			100.0%	1.03 [1.03, 1.03]				ł		
Hotorogonoity: Chi2 -	25.53 df = 5 (P = 0.0)	0001)- 12	= 80%		-					
						0 5	07	1	15	
Test for overall effect:	Z = 29.73 (P < 0.000)	101				0.5	0.7			
Test for overall effect:	Z = 29.73 (P < 0.000	001)				0.5	0.7	BMI		
Test for overall effect:	Z = 29.73 (P < 0.000	001)				0.5	0.7	BMI		
Test for overall effect:	Z = 29.73 (P < 0.000	001)		Odds Ratio		0.5	0.7	BMI Odds Rati	0	
Test for overall effect: Study or Subgroup	Z = 29.73 (P < 0.000 log[Odds Ratio]	001) SE	Weight	Odds Ratio IV, Fixed, 95% Cl	P value	0.5	IV,	BMI Odds Rati Fixed, 95	o % CI	
Test for overall effect: Study or Subgroup Bae et al. 2019	Z = 29.73 (P < 0.000 log[Odds Ratio] 0.0296	001) SE 0.001	Weight 0.0%	Odds Ratio IV, Fixed, 95% Cl 1.03 [1.03, 1.03]	P value 0.033	0.5	IV,	BMI Odds Rati Fixed, 95	o % Cl	
Test for overall effect: Study or Subgroup Bae et al. 2019 Martin et al. 2022	Z = 29.73 (P < 0.000 log[Odds Ratio] 0.0296 0.1823	001) SE 0.001 0.1192	Weight 0.0% 11.9%	Odds Ratio IV, Fixed, 95% CI 1.03 [1.03, 1.03] 1.20 [0.95, 1.52]	P value 0.033 0.137	0.5	IV,	BMI Odds Rati Fixed, 95	o % Cl	
Test for overall effect: Study or Subgroup Bae et al. 2019 Martin et al. 2022	Z = 29.73 (P < 0.000 log[Odds Ratio] 0.0296 0.1823 0.239	001) SE 0.001 0.1192 0.1271	Weight 0.0% 11.9% 10.4%	Odds Ratio IV, Fixed, 95% CI 1.03 [1.03, 1.03] 1.20 [0.95, 1.52] 1.27 [0.99, 1.63]	P value 0.033 0.137 0.062	0.5	U.,	BMI Odds Rati Fixed, 95	o % Cl	
Test for overall effect: Study or Subgroup Bae et al. 2019 Martin et al. 2022 Martin et al. 2022	Z = 29.73 (P < 0.000 log[Odds Ratio] 0.0296 0.1823 0.239 0.3365	001) SE 0.001 0.1192 0.1271 0.1004	Weight 0.0% 11.9% 10.4% 16.7%	Odds Ratio IV, Fixed, 95% CI 1.03 [1.03, 1.03] 1.20 [0.95, 1.52] 1.27 [0.99, 1.63] 1.40 [1.15, 1.70]	P value 0.033 0.137 0.062 0.001	0.5	U.,	BMI Odds Rati Fixed, 95	• CI	
Test for overall effect: Study or Subgroup Bae et al. 2019 Martin et al. 2022 Martin et al. 2022 Martin et al. 2022 Tang et al. 2021	Z = 29.73 (P < 0.000 log[Odds Ratio] 0.0296 0.1823 0.239 0.3365 0.239	001) SE 0.001 0.1192 0.1271 0.1004 0.0641	Weight 0.0% 11.9% 10.4% 16.7% 41.1%	Odds Ratio IV, Fixed, 95% CI 1.03 [1.03, 1.03] 1.20 [0.95, 1.52] 1.27 [0.99, 1.63] 1.40 [1.15, 1.70] 1.27 [1.12, 1.44]	P value 0.033 0.137 0.062 0.001 2.400×10 ⁻¹	4	IV,	BMI Odds Rati Fixed, 95	• CI	
Test for overall effect: Study or Subgroup Bae et al. 2019 Martin et al. 2022 Martin et al. 2022 Martin et al. 2022 Tang et al. 2021 Zhao et al. 2022	Z = 29.73 (P < 0.000 log[Odds Ratio] 0.0296 0.1823 0.239 0.3365 0.239 0.239 0.1293	0.001) SE 0.001 0.1192 0.1271 0.1004 0.0641 0.0921	Weight 0.0% 11.9% 10.4% 16.7% 41.1% 19.9%	Odds Ratio IV, Fixed, 95% CI 1.03 [1.03, 1.03] 1.20 [0.95, 1.52] 1.27 [0.99, 1.63] 1.40 [1.15, 1.70] 1.27 [1.12, 1.44] 1.14 [0.95, 1.36]	P value 0.033 0.137 0.062 0.001 2.400×10° 0.160	4	IV,	BMI Odds Rati Fixed, 95	• CI	
Test for overall effect: Study or Subgroup Bae et al. 2019 Martin et al. 2022 Martin et al. 2022 Tang et al. 2021 Zhao et al. 2022 Total (95% CI)	Z = 29.73 (P < 0.000 log[Odds Ratio] 0.0296 0.1823 0.239 0.3365 0.239 0.1293	0.001) SE 0.001 0.1192 0.1271 0.1004 0.0641 0.0921	Weight 0.0% 11.9% 10.4% 16.7% 41.1% 19.9% 100.0%	Odds Ratio IV, Fixed, 95% CI 1.03 [1.03, 1.03] 1.20 [0.95, 1.52] 1.27 [0.99, 1.63] 1.40 [1.15, 1.70] 1.27 [1.12, 1.44] 1.14 [0.95, 1.36] 1.25 [1.16, 1.36]	P value 0.033 0.137 0.062 0.001 2.400×10 0.160	4	IV,	BMI Odds Rati Fixed, 95	• % CI	
Test for overall effect: Study or Subgroup Bae et al. 2019 Martin et al. 2022 Martin et al. 2022 Martin et al. 2022 Tang et al. 2021 Zhao et al. 2022 Total (95% CI) Heterroponity: Chi ² =	Z = 29.73 (P < 0.000 log[Odds Ratio] 0.0296 0.1823 0.239 0.3365 0.239 0.1293 2.50, df = 4 (P = 0.60)	0.001) SE 0.001 0.1192 0.1271 0.1004 0.0641 0.0921	Weight 0.0% 11.9% 10.4% 16.7% 41.1% 19.9% 100.0%	Odds Ratio IV, Fixed, 95% CI 1.03 [1.03, 1.03] 1.20 [0.95, 1.52] 1.27 [0.99, 1.63] 1.40 [1.15, 1.70] 1.27 [1.12, 1.44] 1.14 [0.95, 1.36] 1.25 [1.16, 1.36]	P value 0.033 0.137 0.062 0.001 2.400×10 ⁻⁰ 0.160	4	, IV,	BMI Odds Rati Fixed, 95	• CI	

Fig b. Forest plot before and after the removal of heterogeneity of BMI. a) Forest plot of causal relationship between BMI genetic susceptibility and rheumatoid arthritis (RA) risk before removing heterogeneity. b) Forest plot of causal relationship between BMI genetic susceptibility and RA risk after removing heterogeneity. CI, confidence interval; IV, inverse variance; SE, standard error.

	Study or Subgroup	log[Odds Ratio]	SE	Weight	Odds Ratio IV, Fixed, 95% Cl	P value		O IV, F	dds Rat ixed, 95	io 5% Cl	
-	Martin et al. 2022	0.3365	0.1004	21.8%	1.40 [1.15, 1.70]	0.001					-
	Martin et al. 2022	0.571	0.0644	52.9%	1.77 [1.56, 2.01]	4.00×10 ⁻¹⁸					
	Martin et al. 2022	0.4447	0.093	25.4%	1.56 [1.30, 1.87]	1.00 × 10-6					
	Total (95% CI)			100.0%	1.63 [1.49, 1.79]					-	•
	Heterogeneity: Chi ² =	4.15, df = 2 (P = 0.1	13); l² = 5	52%		+	-				<u> </u>
b	Test for overall effect:	Z = 10.42 (P < 0.00	0001)			0.:	0	0.7 Body 1	at perce	1.5 entage	2
					Odds Ratio			c	dds Ra	tio	
	Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Random, 95% CI	P value		IV, Ra	andom,	95% CI	
	Martin et al. 2022	0.3365	0.1004	27.9%	1.40 [1.15, 1.70]	0.001					
	Martin et al. 2022	0.4447	0.093	30.3%	1.56 [1.30, 1.87]	4.00×10 ⁻¹⁸					-
	Martin et al. 2022	0.571	0.0644	41.8%	1.77 [1.56, 2.01]	1.00×10-6					
	Total (95% CI)			100.0%	1.60 [1.39, 1.83]					•	
	Heterogeneity: Tau ² = Test for overall effect:	0.01; Chi² = 4.15, df Z = 6.62 (P < 0.0000	= 2 (P = 01)	0.13); ² :	= 52%	-	0.5	0.7 Body	1 fat perc	1.5 entage	2

а

Fig c. Forest plots of body fat percentage (BFP) in different models. a) Forest plot of causal relationship between BFP genetic susceptibility and rheumatoid arthritis (RA) risk (fixed-effect model). b) Forest plot of causal relationship between BFP genetic susceptibility and RA risk (random-effect model). CI, confidence interval; IV, inverse variance; SE, standard error.

Study or Subgroup	log[Odds Ratio	SE	Weight	Odds Ratio IV, Fixed, 95% Cl	P value	Odds Ratio IV, Fixed, 95% Cl	
Huang et al. 2021	-0.8675	0.1078	27.4%	0.42 [0.34, 0.52]	1.78×10 ⁻¹⁴		
Yuan et al. 2021	-0.6931	0.1013	31.1%	0.50 [0.41, 0.61]	1.150×10 ⁻¹³		
Zhao et al. 2022	-0.9835	0.0876	41.5%	0.37 [0.31, 0.44]	6.200×10 ⁻²⁹		
Total (95% CI)			100.0%	0.42 [0.38, 0.47]		•	
Heterogeneity: Chi ² =	4.71, df = 2 (P = 0.	10); l² = 4	58%				<u> </u>
Test for overall effect:	Z = 15.26 (P < 0.0	0001)				Educational attainment	Ź
				Odds Ratio		Odds Ratio	
Study or Subgroup	log[Odds Ratio]	SE	Weight	Odds Ratio IV, Random, 95% Cl	P value	Odds Ratio IV, Random, 95% CI	
Study or Subgroup Huang et al. 2021	log[Odds Ratio] -0.8675	SE 0.1078	Weight 30.8%	Odds Ratio IV, Random, 95% CI 0.42 [0.34, 0.52]	P value 1.78×10 ⁻¹⁴	Odds Ratio IV, Random, 95% CI	
Study or Subgroup Huang et al. 2021 Yuan et al. 2021	log[Odds Ratio] -0.8675 -0.6931	SE 0.1078 0.1013	Weight 30.8% 32.6%	Odds Ratio IV, Random, 95% CI 0.42 [0.34, 0.52] 0.50 [0.41, 0.61]	P value 1.78×10 ⁻¹⁴ 1.150×10 ⁻¹³	Odds Ratio IV, Random, 95% CI	
Study or Subgroup Huang et al. 2021 Yuan et al. 2021 Zhao et al. 2022	log[Odds Ratio] -0.8675 -0.6931 -0.9835	SE 0.1078 0.1013 0.0876	Weight 30.8% 32.6% 36.6%	Odds Ratio IV, Random, 95% CI 0.42 [0.34, 0.52] 0.50 [0.41, 0.61] 0.37 [0.31, 0.44]	P value 1.78×10 ⁻¹⁴ 1.150×10 ⁻¹³ 6.200×10 ⁻²⁹	Odds Ratio IV, Random, 95% CI	
Study or Subgroup Huang et al. 2021 Yuan et al. 2021 Zhao et al. 2022 Total (95% CI)	log[Odds Ratio] -0.8675 -0.6931 -0.9835	SE 0.1078 0.1013 0.0876	Weight 30.8% 32.6% 36.6% 100.0%	Odds Ratio IV, Random, 95% CI 0.42 [0.34, 0.52] 0.50 [0.41, 0.61] 0.37 [0.31, 0.44] 0.43 [0.36, 0.51]	P value 1.78×10 ⁻¹⁴ 1.150×10 ⁻¹³ 6.200×10 ⁻²⁹	Odds Ratio IV, Random, 95% CI	
Study or Subgroup Huang et al. 2021 Yuan et al. 2021 Zhao et al. 2022 Total (95% Cl) Heterogeneity: Tau ² =	log[Odds Ratio] -0.8675 -0.6931 -0.9835 0.01; Chi ² = 4.71, di	SE 0.1078 0.1013 0.0876	Weight 30.8% 32.6% 36.6% 100.0% 0.10); l ² =	Odds Ratio IV, Random, 95% CI 0.42 [0.34, 0.52] 0.50 [0.41, 0.61] 0.37 [0.31, 0.44] 0.43 [0.36, 0.51] = 58%	P value 1.78×10 ⁻¹⁴ 1.150×10 ⁻¹³ 6.200×10 ⁻²⁹	Odds Ratio IV, Random, 95% CI	

Fig d. Forest plots of educational attainment in different models. a) Forest plot of causal relationship between educational attainment genetic susceptibility and rheumatoid arthritis (RA) risk (fixed-effect model). b) Forest plot of causal relationship between educational attainment genetic susceptibility and RA risk (random-effect model). CI, confidence interval; IV, inverse variance; SE, standard error.

Fig e. Forest plots of serum calcium (Ca) in different models. a) Forest plot of causal relationship between serum Ca genetic susceptibility and rheumatoid arthritis (RA) risk (fixed-effect model). b) Forest plot of causal relationship between serum Ca genetic susceptibility and RA risk (random-effect model). CI, confidence interval; IV, inverse variance; SE, standard error.

Fig f. Forest plots of chronic periodontitis in different models. a) Forest plot of causal relationship between chronic periodontitis genetic susceptibility and rheumatoid arthritis (RA) risk (fixed-effect model). b) Forest plot of causal relationship between chronic periodontitis genetic susceptibility and RA risk (random-effect model). CI, confidence interval; IV, inverse variance; SE, standard error.

References

1. Martin S, Tyrrell J, Thomas EL, et al. Correction: Disease consequences of higher adiposity uncoupled from its adverse metabolic effects using Mendelian randomisation. *Elife*. 2022;11:e80233.

 Tang B, Shi H, Alfredsson L, Klareskog L, Padyukov L, Jiang X. Obesity-related traits and the development of rheumatoid arthritis: Evidence from genetic data. *Arthritis Rheumatol*. 2021;73(2):203–211.

3. Bae SC, Lee YH. Causal association between body mass index and risk of rheumatoid arthritis: A Mendelian randomization study. *Eur J Clin Invest*. 2019;49(4):e13076.

4. Zhao SS, Holmes MV, Zheng J, Sanderson E, Carter AR. The impact of education inequality on rheumatoid arthritis risk is mediated by smoking and body mass index: Mendelian randomization study. *Rheumatology (Oxford)*. 2022;61(5):2167–2175.

5. Qian Y, Zhang L, Wu DJH, Xie Z, Wen C, Mao Y. Genetic predisposition to smoking is associated with risk of rheumatoid arthritis: a Mendelian randomization study. *Arthritis Res Ther*. 2020;22(1):44.

6. Jiang X, Zhu Z, Manouchehrinia A, Olsson T, Alfredsson L, Kockum I. Alcohol consumption and risk of common autoimmune inflammatory diseases—Evidence from a large-scale genetic analysis totaling 1 million individuals. *Front Genet*. 2021;12:687745.

7. Bae SC, Lee YH. Alcohol intake and risk of rheumatoid arthritis: a Mendelian randomization study. *Z Rheumatol*. 2019;78(8):791–796.

8. **Pu B, Gu P, Zheng C, Ma L, Zheng X, Zeng Z.** Self-reported and genetically predicted effects of coffee intake on rheumatoid arthritis: Epidemiological studies and Mendelian randomization analysis. *Front Nutr.* 2022;9:926190.

9. Bae SC, Lee YH. Coffee consumption and the risk of rheumatoid arthritis and systemic lupus erythematosus: a Mendelian randomization study. *Clin Rheumatol*. 2018;37(10):2875–2879.

 Huang G, Cai J, Li W, Zhong Y, Liao W, Wu P. Causal relationship between educational attainment and the risk of rheumatoid arthritis: a Mendelian randomization study. *BMC Rheumatol*. 2021;5(1):47.

11. Bae SC, Lee YH. Causal relationship between years of education and the occurrence of rheumatoid arthritis. *Postgrad Med J.* 2019;95(1125):378–381.

12. Yuan S, Xiong Y, Michaëlsson M, Michaëlsson K, Larsson SC. Genetically predicted education attainment in relation to somatic and mental health. *Sci Rep.* 2021;11(1):4296.

13. **Zhou J, Liu C, Sun Y, et al.** Genetically predicted circulating levels of copper and zinc are associated with osteoarthritis but not with rheumatoid arthritis. *Osteoarthritis Cartilage*. 2021;29(7):1029–1035.

14. **Cheng WW, Zhu Q, Zhang HY.** Mineral nutrition and the risk of chronic diseases: A Mendelian randomization study. *Nutrients*. 2019;11(2):378.

15. **Yuan S, Larsson S.** Causal associations of iron status with gout and rheumatoid arthritis, but not with inflammatory bowel disease. *Clin Nutr*. 2020;39(10):3119–3124.

16. **Ye D, Sun X, Guo Y, et al.** Genetically determined selenium concentrations and risk for autoimmune diseases. *Nutrition*. 2021;91–92:111391.

17. **Bae SC, Lee YH.** Causal association between periodontitis and risk of rheumatoid arthritis and systemic lupus erythematosus: a Mendelian randomization. *Z Rheumatol*. 2020;79(9):929–936.

 Yin KJ, Huang JX, Wang P, et al. No genetic causal association between periodontitis and arthritis: A bidirectional two-sample Mendelian randomization analysis. *Front Immunol*. 2022;13:808832.

19. Wu D, Xian W, Hong S, Liu B, Xiao H, Li Y. Graves' disease and rheumatoid arthritis: A bidirectional Mendelian randomization study. *Front Endocrinol (Lausanne)*. 2021;12:702482.

20. **Skrivankova VW, Richmond RC, Woolf BAR, et al.** Strengthening the Reporting of Observational Studies in Epidemiology Using Mendelian Randomization: The STROBE-MR Statement. *JAMA*. 2021;326(16):1614–1621.

21. Burgess S, Davey Smith G, Davies NM, et al. Guidelines for performing Mendelian randomization investigations: update for summer 2023. *Wellcome Open Res*. 2023;4:186.

22. **Martin S, Cule M, Basty N, et al.** Genetic evidence for different adiposity phenotypes and their opposing influences on ectopic fat and risk of cardiometabolic disease. *Diabetes*. 2021;70(8):1843–1856.

23. Amin N, Byrne E, Johnson J, et al. Genome-wide association analysis of coffee drinking suggests association with CYP1A1/CYP1A2 and NRCAM. *Mol Psychiatry*. 2012;17(11):1116-1129.

24. **O'Seaghdha CM, Wu H, Yang Q, et al.** Meta-analysis of genome-wide association studies identifies six new Loci for serum calcium concentrations. *PLoS Genet*. 2013;9(9):e1003796.

25. **Meyer TE, Verwoert GC, Hwang SJ, et al.** Genome-wide association studies of serum magnesium, potassium, and sodium concentrations identify six Loci influencing serum magnesium levels. *PLoS Genet*. 2010;6(8):e1001045.

26. **Teumer A, Holtfreter B, Völker U, et al.** Genome-wide association study of chronic periodontitis in a general German population. *J Clin Periodontol*. 2013;40(11):977-985.