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	� SPINE

Melatonin protects human nucleus 
pulposus cells from pyroptosis 
by regulating Nrf2 via melatonin 
membrane receptors

Aims
This study was performed to explore the effect of melatonin on pyroptosis in nucleus pulpo-
sus cells (NPCs) and the underlying mechanism of that effect.

Methods
This experiment included three patients diagnosed with lumbar disc herniation who failed 
conservative treatment. Nucleus pulposus tissue was isolated from these patients when they 
underwent surgical intervention, and primary NPCs were isolated and cultured. Western 
blotting, reverse transcription polymerase chain reaction, fluorescence staining, and other 
methods were used to detect changes in related signalling pathways and the ability of cells 
to resist pyroptosis.

Results
Western blot analysis confirmed the expression of cleaved CASP-1 and melatonin receptor 
(MT-1A-R) in NPCs. The cultured NPCs were identified by detecting the expression of CD24, 
collagen type II, and aggrecan. After treatment with hydrogen peroxide, the pyroptosis-
related proteins NLR family pyrin domain containing 3 (NLRP3), cleaved CASP-1, N-terminal 
fragment of gasdermin D (GSDMD-N), interleukin (IL)-18, and IL-1β in NPCs were upregu-
lated, and the number of propidium iodide (PI)-positive cells was also increased, which was 
able to be alleviated by pretreatment with melatonin. The protective effect of melatonin on 
pyroptosis was blunted by both the melatonin receptor antagonist luzindole and the nuclear 
factor erythroid 2–related factor 2 (Nrf2) inhibitor ML385. In addition, the expression of the 
transcription factor Nrf2 was up- or downregulated when the melatonin receptor was acti-
vated or blocked by melatonin or luzindole, respectively.

Conclusion
Melatonin protects NPCs against reactive oxygen species-induced pyroptosis by upregulat-
ing the transcription factor Nrf2 via melatonin receptors.
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Article focus
	� This study was performed to explore the 

effect of melatonin on the pyroptosis of 
nucleus pulposus cells (NPCs) and the 
underlying mechanism of that effect.

Key messages
	� Pyroptosis, a newly discovered form 

of cell death, can be induced by reac-
tive oxygen species. Melatonin protects 

NPCs from pyroptosis via the melatonin 
receptor and upregulates nuclear factor 
erythroid 2–related factor 2.

Strengths and limitations
	� We extracted NP tissue from interverte-

bral disc degeneration patients treated 
with percutaneous transforaminal 
endoscopic discectomy (PTED), which 
more closely approximates the clinical 
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situation. We have shown that hydrogen peroxide 
induces pyroptosis in NPCs. However, our work lacks 
in-depth research.

Introduction
Low back pain, usually caused by intervertebral disc 
degeneration (IDD), creates a large social and economic 
burden.1,2 Histopathology and imaging studies of clinical 
samples have indicated that most IDD-related low back 
pain begins with a reduction in number and functional 
disorder of nucleus pulposus cells (NPCs).3,4 Reduction of 
NPCs may induce the imbalance of synthesis and degra-
dation of the extracellular matrix (ECM), accelerating the 
IDD process.5 However, the underlying mechanisms of 
the reduction in NPCs are still largely unclear.

Pyroptosis, a newly discovered form of cell death,6 can 
lead to cell number reduction. As generally accepted, 
apoptosis depends on the activation of CASP-3,8,9 but 
does not cause inflammation. In contrast to apoptosis, 
pyroptosis depends on the activation of CASP-1 and is 
accompanied by an increase in inflammatory cytokines 
such as cleaved interleukin (IL)-1β and IL-18.7 It was previ-
ously revealed that IL-1β was highly expressed in degen-
erated discs and closely related to IDD progression.8 
However, pyroptosis of NPCs has rarely been reported. 
Exploring the pyroptosis of NPCs is helpful for further 
understanding NPC reduction and exploring new targets 
for the treatment of IDD.

In recent years, the protective effect of melatonin 
(N-acetyl-5-methoxytryptamine) on human degenerative 
diseases has been a research hotspot. Melatonin was first 
isolated from the bovine pineal gland and was reported 
to be distributed in various organs and organisms.9,10 In 
addition to modulating circadian rhythms, melatonin 
has also shown beneficial effects in sleep disorders,11,12 
osteoporosis,13 cancers,14 diabetes,15 brain injury,16 neuro-
protection,17 and bone marrow mesenchymal stem cell 
proliferation18 through activation of melatonin recep-
tors. The underlying mechanisms involved in the protec-
tive effects of melatonin include but are not limited to 
inhibiting the mTOR signalling pathway,19 reducing the 
inflammatory response,20 activating the AMPK signalling 
pathway,21 disturbing SUMOylation,14 and enhancing 
antioxidant capacity.22 However, the effect of melatonin 
on NPC pyroptosis has not been reported. Exploring the 
potential effect of melatonin on NPC pyroptosis would 
help to identify new strategies for the treatment of IDD.

An underlying association between IDD and melatonin 
was first implicated by the finding that melatonin reduces 
the cartilage endplate vascularity of degenerated inter-
vertebral discs.23 Surgical pinealectomy was reported to 
accelerate IDD in chickens.24 In rat IDD models, mela-
tonin was found to activate the recovery process in 
degenerated IVD tissue, possibly by stimulating trans-
forming growth factor (TGF)-beta activity.23 In addition, 
melatonin also protects NPCs25,26 and endplate chon-
drocytes27 from apoptosis, delaying IDD progression. 
However, the potential association between melatonin 

and pyroptosis of NPCs remains to be determined. This 
study was performed to explore the effects of melatonin 
on the pyroptosis of NPCs and the likely signal transduc-
tion pathways involved.

Methods
Cell culture and treatment.  Nucleus pulposus tissue was 
isolated from three patients suffering lumbar disc hernia-
tion who were being treated with surgical intervention.28 
All written informed consent was obtained, and the re-
search was approved by the ethics committee of The 
First Affiliated Hospital of Wenzhou Medical University. 
According to symptoms, signs, and imaging data, three 
patients (one male, two female) who were diagnosed 
with lumbar disc herniation and had waist and leg symp-
toms after the failure of conservative therapy for three 
months were included. Patients with other diseases of 
the spine or systemic diseases, such as diabetes mellitus, 
hypertension, and heart disease, were excluded from this 
study. In this study, the three included patients had an 
IDD of grade IV based on Pfirrmann’s classifications. The 
degenerative segments of two patients were L5/S1 and 
those of the other were L4/L5. The mean age of the pa-
tients was 47.6 years (standard deviation (SD) 2.5). NPCs 
were isolated and cultured as previously described.4,8 
Briefly, after the intervertebral disc tissue was washed 
with sterile saline three times, the annulus fibrosus tissue 
and the tough cartilage endplate were carefully removed. 
The remaining nucleus pulposus tissue was then digest-
ed with 0.25% trypsin for 30 minutes, followed by 0.2% 
type II collagenase (Sigma-Aldrich, USA) for four hours in 
a sterile 15 ml centrifuge tube. The cells were then filtered 
through 200 mesh sieves and cultured in conditioned 
medium made up of 84% DMEM/F12 medium and 16% 
foetal bovine serum (Gibco, USA, CAS No.: 10099141). 
The cells were cultured in a humidified incubator with 1% 
O2, 5% CO2, and 94% N2 at 37°C. NPCs were identified 
by detecting the expression of CD24, collagen type II, 
and aggrecan.29 The second-passage NPCs were used for 
further experiments.30 To induce oxidative stress, NPCs 
were treated with 200 μM hydrogen peroxide for three 
hours.31 Melatonin (50 nM, MCE, USA, CAS No.: 73-31-
4) and luzindole (10 μM, Santacruz Biotechnology, USA, 
CAS No.: sc-202700) were used to activate and inhibit the 
melatonin receptor.26 ML385 (20 μM MCE, USA, CAS No.: 
846557-71-9) was used to inhibit the expression of Nrf2, 
according to the cell counting kit-8 (CCK) test (Beyotime, 
China, CAS No.: C0038).
Cell viability assay.  The CCK-8 assay was performed 
according to the manufacturer’s instructions. Briefly, 
1×104 cells/well were seeded in 96-well plates and treat-
ed with different drugs. Then, the medium was replaced 
with 100 μl basic medium containing 10 μl CCK-8 solu-
tion for another two hours in the incubator at 37°C. 
Finally, the absorbance at 450 nm of each well was meas-
ured using an enzyme labelling measuring instrument 
(Infinite 200 Pro; Tecan, USA). There were three replicates 
for each group.
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ROS detection.  The ROS level of NPCs was evaluated by 
2′,7′-Dichlorofluorescin diacetate (DCFH-DA) (Beyotime, 
China, CAS No.: S0033) according to the instructions. 
After the DCFH-DA was diluted with serum-free medium 
to a final concentration of 10 μmol/l, the collected cells 
were suspended in diluted DCFH-DA and incubated in a 
cell incubator for 20 minutes to allow the probe to fully 
contact the cells. Before detection by flow cytometry (BD 
Biosciences, USA), the cells were washed with serum-free 
cell culture medium three times to remove the remain-
ing DCFH-DA. Experiments were repeated three times 
independently.
RNA extraction, retrotranscription, and real-time 
PCR.  Target gene primers were designed and synthe-
sized by Shanghai Shenggong Biological Co (China), and 
β-actin was used as an internal reference control (Table I). 
The total RNA from the NPCs was extracted using kit rea-
gents (RC112-01; Vazyme, China) according to the man-
ufacturer’s instructions. Reverse transcription of 1 μg of 
RNA enables the amplification of complementary prod-
ucts.32 Quantitative polymerase chain reaction (PCR) was 
performed in a 20 μl reaction system containing specific 
primers and ChamQ SYBR qPCR Master Mix (Q321-02; 
Vazyme). Amplification was performed in the Roche 
LightCycler 480 System (Roche, Switzerland). The PCR 
extension conditions were 95°C for 30 seconds, 95°C for 
five seconds, 60°C for 34 seconds, and 40 cycles. There 
were three replicates for each group. The Ct value ob-
tained for each group is represented by 2-ΔΔCt or 2-ΔCt.
Protein isolation and Western blot.  Total cellular protein 
was extracted from NPCs with modified radioimmunopre-
cipitation assay (RIPA) buffer (Beyotime, China, Cat. No.: 
P0013B) supplemented with 1 mmol/l phenylmethylsul-
fonyl fluoride (PMSF) following the manufacturer’s proto-
col. Proteins (40 μg) of each group were resolved by so-
dium dodecyl-sulfate polyacrylamide gel electrophoresis 
(SDS‒PAGE) (12%) and transferred to polyvinylidene flu-
oride (PVDF). After transfer, the membranes were blocked 
in Tris-buffered saline (TBST) containing 5% non-fat milk 
for two hours at 37°C and then incubated overnight with 
primary anti-NLRP3 (1:1,000; Abcam, USA, Cat. No.: 
ab210491), CASP-1 (1:1,000, Proteintech, USA, Cat. No.: 
22915-1-AP), GSDMD (1:1,000, Affinity Biosciences, USA, 
Cat. #: AF4012), GSDMD-N (1:1,000, Affinity Biosciences, 
Cat. #: DF12275), IL-18 (1:1,000, Affinity Biosciences, 
Cat. #: DF6252), IL-1β (1:500, ABclonal, USA, Cat. No.: 
A1112), Nrf2 (1:1,000, Abcam, Cat. No.: ab62352), and 

glyceraldehyde 3-phosphate dehydrogenase (GAPDH) 
(1:10,000, Proteintech, Cat. No.: 10494-1-AP) at 4°C. 
Before incubation with secondary antibodies for one to 
two hours at 37°C, the membranes were washed with 
TBST solution three times. The bands were visualized by 
an ECL-Plus detection kit (P10100; New Cell & Molecular 
Biotech Co). The membranes were analyzed by Quantity 
One software (Bio-Rad, USA). Experiments were repeated 
three times independently.
Immunohistochemical staining.  The paraffin-embedded 
nucleus pulposus tissues were processed for immuno-
histochemical staining as previously described.33 The pri-
mary antibody used was caspase-1 (1:150, Proteintech, 
Chicago, USA, Cat. No.: 22915-1-AP) and the secondary 
antibody was goat anti-rabbit IgG (H+L) HRP (1:200, 
Affinity Biosciences, USA, Cat. #: S0001). The sections 
were visualized using a microscope (CTR4000B, Leica). 
Experiments were repeated three times independently.
Immunofluorescence staining.  NPCs were cultured on 
14 mm-diameter round glass plates (801010; Nest, China) 
and treated as appropriate. After 24 hours, the cells were 
fixed with 4% paraformaldehyde.34 Cells were permeabi-
lized with 0.1% Triton in PBS, blocked with QuickBlock 
(P0260, Shanghai, China, Beyotime) blocking buffer, 
and incubated with primary antibodies against aggrecan 
(1:500, Abcam, USA, Cat. No.: ab3778)) and collagen 
II (1:500, Abcam, USA, Cat. No.: ab34712) overnight at 
4°C. Collagen II primary antibodies were detected us-
ing goat anti-rabbit IgG labelled by fluorescein isothio-
cyanate isomer (FITC) (1:500, Affinity Biosciences, USA, 
Cat. #: S0008), and aggrecan primary antibodies were 
detected using goat anti-mouse IgG labelled by Cyanine 
3 (CY3) (1:500, Affinity Biosciences, USA, Cat. #: S0012). 
Cells were stained with 4′,6-diamidino-2-phenylindole 
(DAPI), and the glass slides were sealed after washing 
three times. Sections were acquired and imaged using 
laser scanning confocal microscopy (LSMC).
Fluorescence staining.  Hoechst 33342/propidium iodi-
nate (PI) (CA1120; Solarbio, China) double staining ob-
served by fluorescence microscopy (CTR4000B; Leica, 
Germany) was used to detect the membrane destruction 
of the cells according to the manufacturer’s instructions. 
Briefly, treated cells in each well of the six-well plates 
were incubated with 1 ml of staining buffer containing 
5 μl of Hoechst 33,342 and PI dye for 30 minutes at 4°C 
before observation. The stained cells were visualized us-
ing LSMC (A1; Nikon, Japan). Experiments were repeated 
three times independently.
Statistical analysis.  Statistical analyses were performed 
with GraphPad Prism 6.0 (GraphPad, USA). The results 
are expressed as the mean and standard deviation (SD). 
In addition, the measurement data were compared with 
independent-samples t-test. The graphs were produced 
by GraphPad 6.0 software. A p-value < 0.05 was consid-
ered significant. Unless otherwise stated, all in vitro ex-
periments were performed at least three times, and three 
independent experiments used cells from three different 
donors.

Table I. Primer sequences used for reverse-transcription polymerase chain 
reaction analyses, as also reported in Bai et al.33

Gene Sequence

CD24
Forward 5'-CCCACGCAGATTTATTCCAG-3'

Reverse 5'-GACTTCCAGACGCCATTTG-3'

β-actin
Forward 5'-GGACTCGTCATACTCCTGCTTG-3'

Reverse 5'-GGAAATCGTGCGTGACATTAAG-3'
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Fig. 1

Identification of nucleus pulposus cells (NPCs) isolated from patients with lumbar disc herniation (LDH). a) The MRI T2 weighted images show the 
intervertebral disc of the patients with LDH. Red arrows indicate the herniated disc. b) Macroscopic observation of nucleus pulposus tissues and 
microscopic observation of the cultured NPCs (magnification: ×100, scale bars = 200 μm). c) Caspase-1 in the nucleus pulposus tissue was detected by 
immunohistochemistry (magnification: ×200, scale bars = 100 μm). d) The mRNA expression of aggrecan, Collagen Ⅱ, SOX9, and CD24 was detected by 
reverse-transcription polymerase chain reaction. e) The immunofluorescence assay of collagen II and aggrecan of NPCs (magnification: ×600, scale bar 
= 50 μm). GAPDH, glyceraldehyde 3-phosphate dehydrogenase; mRNA, messenger RNA.
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Fig. 2

Detection of pyroptosis-related proteins in human nucleus pulposus cells (NPCs). a) The expression of melatonin receptor type 1A (MT-1A-R) and cleaved 
caspase-1 (CASP-1) of NPCs was detected by Western blot. b) The influence of hydrogen peroxide with different concentrations on NPC viability was detected 
by the cell counting kit-8 test. c) The intracellular reactive oxygen species (ROS) levels of NPCs were detected by flow cytometry through DCFH-DA staining. 
The P1 value represents the fluorescence intensity of each 1×104 NPCs. d) The comparison of the fluorescence intensity of NPCs treated with and without 
hydrogen peroxide. e) The expression of pyroptosis-related protein NLRP3, cleaved CASP-1, N-terminal fragment of gasdermin D (GSDMD-N), interleukin 
(IL)-18, and IL-1β expressed in NPCs with and without treatment of hydrogen peroxide (200 μM for three hours) was detected by Western blot. f) The panel 
showed the gray histogram of the Western blot band in Figure 2e. g) The influence of ML385 with different concentrations on cell viability of NPCs. *p＜0.05, 
**p < 0.01. GAPDH, glyceraldehyde 3-phosphate dehydrogenase.
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Results
Pyroptosis-related proteins were upregulated in human 
NPCs treated with hydrogen peroxide.  The MRI of two pa-
tients with IDD is shown in Figure 1a. The nucleus pulpo-
sus tissue extracted from the patients with IDD was ivory 
white, and the NPCs displayed a long fusiform shape under 
the light microscope (Figure 1b). Immunohistochemical 
staining showed that CASP-1 was present in the cellular 
portion of intervertebral disc tissues (Figure 1c). The mes-
senger RNA (mRNA) expression of aggrecan, collagen II, 
SOX9, and CD24 in NPCs was confirmed by real-time 
PCR (Figure 1d), and the expression of collagen type II 
and aggrecan was detected by immunofluorescence 
(Figure 1e). In parallel, identification of NPCs by the fluo-
rescently labelled monoclonal antibody CD24 is shown in 
Supplementary Figure b. The presence of cleaved CASP-1 
in NPCs was confirmed by Western blot (Figure 2a). The 
influence of different concentrations of hydrogen perox-
ide on the viability of nucleus pulposus cells was test-
ed by the CCK-8 test. Hydrogen peroxide significantly 
reduced the viability of NPCs at concentrations greater 
than 200 μM (Figure 2b). After treatment with 200 μM 
hydrogen peroxide for three hours, the ROS level in NPCs 
was increased significantly (Figures 2c and 2d). Through 
Western blot analyses, the pyroptosis-related proteins 
NLRP3, cleaved CASP-1, GSDMD-N, IL-18, and cleaved 
IL-1β were found to be upregulated after treatment with 
hydrogen peroxide (Figures  2e and  2f). Under LSMC, 
more PI-positive NPCs were found in NPCs treated with 
hydrogen peroxide via Hoechst 33342/PI double staining 
(Figure 3a). Additional evidence of pyroptosis in NPCs is 
presented in Supplementary Figures c and d.
Melatonin application inhibited the upregulation of py-
roptosis-related proteins in NPCs via melatonin recep-
tors.  As confirmed by Western blotting, melatonin mem-
brane receptors (MT-1A-R) were present in human NPCs 
(Figure 2a). Compared with NPCs treated with hydrogen 
peroxide, pretreatment with melatonin significantly up-
regulated the expression of Nrf2 and downregulated 
the pyroptosis-related proteins NLRP3, cleaved CASP-1, 
GSDMD-N, IL-18, and IL-1β (Figures 3b and 3c). In addi-
tion, the fluorescence staining test also showed that cells 
with cellular membrane rupture and PI-positive staining 
were also decreased by pretreatment with melatonin 
(Figure 3a).
Luzindole, a melatonin receptor antagonist, blunted the 
protective effects of melatonin in NPCs.  When NPCs were 
pretreated with melatonin receptor antagonist luzindole 
at a concentration of 10 µM, the effect of melatonin on 
NPCs was blunted. The upregulation of Nrf2 and the in-
hibitory effect on ROS-induced upregulation of NLRP3, 
cleaved CASP-1, GSDMD-N, IL-18, and IL-1β were all 
blunted, as shown by Western blot analysis (Figure 3b). 
Under LSMC, more PI-positive NPCs were observed in the 
group treated with luzindole, melatonin, and hydrogen 
peroxide compared with the group treated with hydro-
gen peroxide and melatonin (Figure 3a).

ML385, an Nrf2 inhibitor, blunted the effects of melatonin 
on NPCs.  Treatment with ML385 at a concentration of 
40  µM did not significantly affect the viability of NPCs 
(Figure  2g). When NPCs were pretreated with ML385, 
an Nrf2 inhibitor, the effect of melatonin in NPCs was 
also blunted. The inhibitory effect of melatonin on the 
ROS-induced upregulation of NLRP3, cleaved casp-1, 
GSDMD-N, IL-18, and IL-1β and the increase in PI-positive 
cells was blunted (Figure 3). It was inferred that Nrf2 was 
involed in the protective effect of melatonin on the py-
roptosis of NPCs.(Figure 4)

Discussion
In this study, we confirmed that hydrogen peroxide 
induces pyroptosis in NPCs.33 Nucleus pulposus tissue 
was extracted from patients with IDD treated with PTED. 
Endoscopic observation and isolation make it possible 
to obtain nucleus pulposus tissue without other cell 
contamination. We identified nucleus pulposus cells by 
observing the cell morphology through a microscope 
and detecting the expression of the cell-specific proteins 
CD24, collagen type II, and aggrecan.29 Pyroptosis, a 
newly discovered form of cell death, can be induced by 
lipopolysaccharide (LPS) or ROS. By activating the NLRP3 
inflammasome, ROS increases the cleavage of CASP-1, 
leading to pore formation and rupture of the cellular 
membrane and the cleavage of IL-1β.35 To explore the 
potential function of melatonin in pyroptosis, we identi-
fied the expression of CASP-1 in nucleus pulposus tissues 
and built a pyroptosis model of NPCs by using hydrogen 
peroxide.33 The upregulated expression of the pyroptosis-
related proteins NLRP3, cleaved CASP-1, GSDMD-N, 
IL-18, and IL-1β detected by Western blot proved that the 
pyroptosis signalling pathway was activated by hydrogen 
peroxide. Since PI is unable to penetrate the cells with a 
complete cellular membrane, the nuclei of cells in the late 
apoptotic stage show highlighted blue fluorescence with 
Hoechst 33342 staining. The dark blue- and red-positive 
cells during Hoechst 33342/PI double staining indicate 
that the cells are undergoing pyroptosis. Detection of 
the expression of cleaved CASP-1 and Hoechst 33342/
PI via double staining has been reported as a convincing 
method to detect pyroptosis.35

Melatonin protects NPCs from pyroptosis via the 
melatonin receptor. Melatonin is an amine hormone 
produced by the pineal gland of mammals and reported 
to be effective in retarding degenerative and inflam-
matory diseases, but the potential mechanism remains 
to be elucidated.36–38 In this study, when NPCs were 
pretreated with 50  nM melatonin for 24  hours before 
treatment with hydrogen peroxide, the upregulation of 
pyroptosis-related proteins and the increase in PI-pos-
itive cells were all alleviated, revealing the protective 
effect of melatonin on ROS-induced pyroptosis in NPCs. 
The biological effects of melatonin are mainly mediated 
by the specific binding of melatonin receptors and the 
downstream signalling pathways.39 In addition, studies 
have found that melatonin can also bind to calmodulin 
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Fig. 3

Pyroptosis-related indexes of nucleus pulposus cells (NPCs) treated with different drugs. a) The Hochest33342/propidium iodide (PI) double staining of NPCs 
treated with different drugs (magnification: ×600, scale bar = 50 μm). b) Expression of pyroptosis-related proteins of NPCs treated with different drugs was 
detected by Western blot analysis. c) The panel showed the gray histogram of the Western blot analysis. *p＜0.05, **p < 0.01, . CASP-1, caspase-1; GAPDH, 
glyceraldehyde 3-phosphate dehydrogenase; GSDMD-N, N-terminal fragment of gasdermin D; IL, interleukin; NLRP3, pyroptosis-related proteins NLR family 
pyrin domain containing 3; Nrf2, nuclear factor erythroid 2-related factor 2.
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in cells and regulate the calmodulin signalling pathway 
through adenylate cyclase or other structural proteins, 
thereby participating in a variety of functions, including 
calcium ion transport.40 In humans, melatonin receptors 
are mainly distributed in the central nervous system, 
intestine, ovary, blood, and skeletal system.41 The mela-
tonin receptor MT-1A-R was first proven to be present in 
human NPCs.39 To further explore whether the melatonin 
receptor was involved in the protective effect of mela-
tonin against pyroptosis of NPCs, luzindole – a melatonin 
receptor antagonist – was applied. Pretreatment with 
luzindole significantly blunted the protective effect of 
melatonin on NPC pyroptosis, indicating that melatonin 
functions via the melatonin receptor.

Melatonin protects NPCs from pyroptosis by upreg-
ulating Nrf2. Nrf2 is a transcription factor and regu-
lates the expression of antioxidant proteins that protect 

against oxidative damage triggered by injury and inflam-
mation.42 Activation of Nrf2 results in the induction of 
many cytoprotective proteins, which include but are not 
limited to NAD(P)H quinone oxidoreductase 1 (Nqo1) 
and haem oxygenase-1 (HMOX1, HO-1).43,44 To explore 
the potential mechanism of the protective effect of mela-
tonin on ROS-induced pyroptosis, the expression of Nrf2 
was detected when the melatonin receptor was acti-
vated and inhibited. From the Western blot analysis, the 
expression of Nrf2 was upregulated when the melatonin 
receptor was activated and downregulated when the 
melatonin receptor was inhibited, revealing that Nrf2 was 
downstream of the melatonin receptor. When cells were 
pretreated with an Nrf2 inhibitor, ML385, the protective 
effect of melatonin on pyroptosis was also inhibited, indi-
cating that the protective effect of melatonin on pyro-
ptosis was dependent on the upregulation of Nrf2. In this 

Fig. 4

Hydrogen peroxide induces the pyroptosis of nucleus pulposus cells (NPCs), and melatonin protects NPCs against reactive oxygen species (ROS)-induced 
pyroptosis by upregulating the transcription factor Nrf2 via melatonin receptors. CASP-1, caspase-1; GSDMD-N, N-terminal fragment of gasdermin D; IL, 
interleukin; NLRP3, NLR family pyrin domain containing 3; Nrf2, nuclear factor erythroid 2–related factor 2; PI, propidium iodide.
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study, we have revealed that melatonin exhibited protec-
tive effects on ROS-induced pyroptosis of human NPCs at 
least partially through upregulating Nrf2. However, the 
further potential mechanism still needs to be explored by 
additional experiments in vitro and in vivo.

In summary, we have revealed for the first time that 
hydrogen peroxide induces pyroptosis in NPCs and that 
melatonin protects against ROS-induced pyroptosis, 
likely by upregulating the Nrf2 transcription factor via 
melatonin receptors .

Supplementary material
‍ ‍Figures displaying the pyroptosis process of nu-

cleus pulposus cells (NPCs) and the expression of 
gasdermin D and N-terminal fragment of gasder-

min D; NPC identified by fluorescently labelled monoclo-
nal antibody CD24; dot blot results of pyroptosis-related 
proteins in NPCs treated with different drugs; pyroptosis-
related indexes of NPCs treated with different drugs; 
NPCs isolated from patients with lumbar disc herniation; 
and a video demonstrating optical microscopy of the py-
roptosis process of NPCs (magnification: ×600).
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