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	� UPPER LIMB

Evaluation of at-home physiotherapy

MACHINE-LEARNING PREDICTION WITH SMART WATCH INERTIAL 
SENSORS

Aims
An objective technological solution for tracking adherence to at-home shoulder physiothera-
py is important for improving patient engagement and rehabilitation outcomes, but remains 
a significant challenge. The aim of this research was to evaluate performance of machine-
learning (ML) methodologies for detecting and classifying inertial data collected during in-
clinic and at-home shoulder physiotherapy exercise.

Methods
A smartwatch was used to collect inertial data from 42 patients performing shoulder physio-
therapy exercises for rotator cuff injuries in both in-clinic and at-home settings. A two-stage 
ML approach was used to detect out-of-distribution (OOD) data (to remove non-exercise 
data) and subsequently for classification of exercises. We evaluated the performance impact 
of grouping exercises by motion type, inclusion of non-exercise data for algorithm training, 
and a patient-specific approach to exercise classification. Algorithm performance was evalu-
ated using both in-clinic and at-home data.

Results
The patient-specific approach with engineered features achieved the highest in-clinic per-
formance for differentiating physiotherapy exercise from non-exercise activity (area under 
the receiver operating characteristic (AUROC) = 0.924). Including non-exercise data in al-
gorithm training further improved classifier performance (random forest, AUROC = 0.985). 
The highest accuracy achieved for classifying individual in-clinic exercises was 0.903, using 
a patient-specific method with deep neural network model extracted features. Grouping ex-
ercises by motion type improved exercise classification. For at-home data, OOD detection 
yielded similar performance with the non-exercise data in the algorithm training (fully con-
volutional network AUROC = 0.919).

Conclusion
Including non-exercise data in algorithm training improves detection of exercises. A patient-
specific approach leveraging data from earlier patient-supervised sessions should be consid-
ered but is highly dependent on per-patient data quality.

Cite this article: Bone Joint Res 2023;12(3):165–177.
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Article focus
	� This research evaluates the performance 

of machine-learning (ML) algorithms in 
predicting and classifying shoulder phys-
iotherapy exercises from inertial data 
captured with commercial smartwatches 
worn by patients as they performed 

exercises in the supervised clinical and 
unsupervised at-home settings.

Key messages
	� Detection of non-exercise data in the 

home setting can be improved by 
including a proxy activities of daily 
living dataset in algorithm training, by 
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grouping exercises by similar motion for classifica-
tion, and by leveraging patient-specific exercise data 
from in-clinic visits.
	� This research highlights the importance of verifying 

ML algorithm performance, not only in the lab or 
clinical setting but also with patients in the at-home 
environment.

Strengths and limitations
	� Algorithm performance in classifying physiotherapy 

exercise performance was evaluated using real-world 
clinical data collected via a commercial smartwatch 
from patients being treated for rotator cuff pathology 
both in the clinic and the at-home setting.
	� Ground truth labels for the independent at-home 

exercises (in-distribution vs out-of-distribution) were 
assigned manually after data collection, leading to 
potential uncertainty in the assigned labels.

Introduction
Shoulder pain affects approximately 16% to 26% of 
the adult population,1-3 and can significantly impact 
quality of life.4–6 Rotator cuff pathology is the most 
common condition affecting between 60% and 85% 
of patients with shoulder disorders.2,3 Physiotherapy is 
a first-line treatment for rotator cuff pathology which 
can improve patient outcomes (pain and function).7,8 A 
large proportion of prescribed physiotherapy is expected 
to be performed independently in the at-home setting, 
and adherence to assigned home exercise is considered 
important to programme effectiveness.9-11 Accurate and 
objective measurement of adherence is critical to iden-
tifying and addressing barriers to exercise. Low-tech 
solutions (i.e. patient-reported diaries) have low comple-
tion rates and are subject to various biases.12,13 Wearable 
devices containing inertial measurement units (IMUs) 
have gained wide acceptance in human activity tracking, 
including physiotherapy participation.

Machine-learning (ML) algorithms have been devel-
oped for time series data enabling the analysis of IMU 
data generated from wearables.14,15 In using ML to eval-
uate physiotherapy participation from IMU data, it is 
important to accurately classify exercises (in-distribu-
tion data) and identify periods when participants may 
be performing unrelated tasks (out-of-distribution data 
(OOD).16,17 OOD data may negatively impact ML classifier 
accuracy, and thus should be removed in pre-processing 
(before performing exercise classification) or accounted 
for through use of an open set classifier.

Systems proposed for exercise classification in the 
home setting using IMUs or image-based motion tracking, 
with statistical or ML-based classification algorithms,18-21 
are often solely tested in laboratory or in-clinic environ-
ments. Performance of exercises and OOD activities may 
be much more variable in the at-home environment. 
Recent work measuring at-home exercise participation 
with IMUs and ML classification in stroke patients has 
noted limitations with regard to the lack of validation on 

at-home data.21 Lack of direct analysis of at-home exer-
cise and OOD data may limit the ML-derived accuracy of 
physiotherapy adherence.22

We have previously reported on using smartwatch 
inertial data for classifying shoulder physiotherapy 
exercise in healthy volunteers.23 Our ML physiotherapy 
prediction system was further evaluated with a clinical 
dataset collected from 42 patients undergoing shoulder 
physiotherapy for rotator cuff pathology.24 With our 
system, a record of inertial data is generated whenever a 
patient wears their watch (in-clinic or at-home). In-clinic 
data are labelled in real time by physiotherapists via a 
companion app (tablet interface). Data collected at home 
are analyzed with a ML pipeline, where non-exercise data 
are removed by a trained OOD detector and a separate 
classifier labels exercises in the remaining data.

This study aims to assess the performance of our system 
in detecting and classifying physiotherapy exercises in 
the unsupervised at-home setting, considering: exercise 
groupings, using a proxy OOD dataset in training, and 
leveraging historic patient-specific in-clinic data.

Methods
Datasets.  Inertial data (accelerometer, gyroscope) were 
collected from 42  patients with rotator cuff patholo-
gy wearing Huawei Watch 2 smartwatches (Huawei 
Technologies, China) while they performed prescribed 
physiotherapy exercises in clinic under physiotherapist 
supervision (1,951 records, 23.8 hours, labelled by exer-
cise class (n = 18, Table I)), and independently at home 
(3,659 records, 1,288  hours, unlabelled) (REB #353-
2018).24 An additional OOD class was drawn from the 
publicly available dataset ProxyA,25 consisting of inertial 
data collected from 20 healthy adults performing activi-
ties of daily living (ADLs).

Patients attended supervised clinical physiotherapy 
sessions at one-week intervals to a maximum of 12 weeks. 
Mean age of patients was 45 years (standard deviation 
(SD) 13), with 15  males and 27  females. Full-thickness 
rotator cuff tears were present in 13 patients, 12 patients 
had partial-thickness tears, and 17 patients had no tear. 
All patients were treated non-surgically. At baseline, 
patients had mean Disability of the Arm, Shoulder and 
Hand questionnaire (DASH) scores of 44 (SD 21)  and 
mean numerical pain rating scale (NPRS) scores of 5.2 
(SD 1.9).
Data processing.  The Android Wear OS samples the in-
ertial sensors asynchronously and irregularly (~50  Hz). 
Data were interpolated to yield consistent 50  Hz time 
steps. A sliding window segmentation with ten-second 
window length and step size of 50 was used to tensorize 
and augment the dataset (Seglearn).14

Feature extraction.  Engineered statistical features were 
calculated for each sensor channel on each window seg-
ment including: median, absolute energy (root mean 
squared), SD, variance, minimum, maximum, skewness, 
kurtosis, mean spectral energy, and mean crossings. 
Deep feature extraction was performed using the output 
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of the penultimate layer of a fully convolutional network 
(FCN) (i.e. pre-Softmax).
Machine-learning pipeline.  The ML pipeline operates in a 
two-stage process: labelled inertial data were first used to 
train an OOD detector for removal of non-exercise data, 
and then to train a model for classification of exercises 
(Figure 1).
Algorithms.  Algorithms were selected for evaluation 
based on performance (> 90% classification accuracy, 
> 0.90 area under the receiver operating characteristic 
(AUROC)) on shoulder physiotherapy IMU data collected 
from healthy subjects and on ADL datasets.23,26,27 These 
algorithms are commonly employed where inertial data 
are used to predict physiotherapy and rehabilitation exer-
cise with good performance.21,28

Patient-specific data.  The patient-specific method 
(Figure 2) uses a K-Nearest Neighbour (KNN) algorithm 
trained on the last supervised session of each exercise 
on a per-patient basis. Input to the KNN was either en-
gineered statistical features or FCN embeddings, with 
either feature extractor fit on the training dataset. The 
Scikit-learn implementation of KNN was used with three 
nearest neighbours and a Euclidean distance metric.29 
Otherwise, default hyperparameters were used.
Out-of-distribution detection algorithms.  OOD detec-
tion algorithms were as follows: 1) KMeans (Engineered 
Features/FCN Embeddings) - Unsupervised algorithm 
with iterative updating assigning data to clusters. OOD 
data detected by comparing distance to cluster centre 
versus threshold value. Scikit-Learn implementation with 
default hyperparameters;29 2) FCN Softmax Threshold - 
Softmax layer output in a deep learning (DL) model is 
often interpreted as a confidence metric;30 samples below 

threshold may be classified as OOD; and 3) patient-
specific method (Engineered Features/FCN Embeddings) 
- OOD prediction by KNN is based on exceeding a thresh-
old mean distance from nearest n-neighbors (n = 3) in 
the support set (most recent in-clinic session). OOD 
thresholds were determined based on a minimum de-
sired sensitivity of 0.90 to reduce likelihood of exercise 
non-detection (Type II errors).
Out-of-distribution detection algorithms with proxy da-
taset.  Including proxy OOD data (SPARS9x-OOD, unla-
belled ADL data matched to size of in-distribution data-
set) as an additional class in training converts the OOD 
problem to supervised classification.26

In-distribution classification algorithms.  In-distribution 
classification algorithms were as follows: 1) FCN su-
pervised - a DL model used for time series classification 
(batch size = 256, learning rate = 0.0001, epochs = 150);31 
Keras implementation available online;32 2) random for-
est (Engineered Features/FCN Embeddings) - ensemble 
of decision trees, predicts based on majority vote; Scikit-
Learn implementation with default hyperparameters;29 
and 3) patient-specific method (Engineered Features/
FCN Embeddings) - for in-distribution classification, KNN 
predicts class directly based on support.
Validation.  For labelled in-clinic data, algorithm perfor-
mance was evaluated using five-fold cross-validation, 
splitting the dataset by study subject. All classes (exer-
cises, Table  I) were represented in each cross-validated 
run of the model. The test sets were composed of the 
most recent session of labelled in-clinic data in the test 
split of each fold. The second-to-last session was used for 
patient-specific methods. Those records that did not have 
supporting data of the same class from previous in-clinic 

Table I. Physiotherapy exercises included in the dataset and motion groupings.

Exercise Count Motion Simple motion Position

Active shoulder flexion 100 Flexion Elevation Upright

Active shoulder abduction 35 Abduction Elevation Upright

Assisted shoulder flexion 119 Flexion Elevation Upright

Assisted shoulder flexion 87 Flexion Elevation Lying

Shoulder girdle stabilization with elevation 130 Flexion Elevation Upright

Assisted shoulder external rotation 89 External rotation Rotation Upright

Assisted shoulder internal rotation 96 Internal rotation Rotation Upright

Assisted shoulder internal rotation 61 Internal rotation Rotation Side-lying

Resisted shoulder internal rotation 131 Internal rotation Rotation Upright, adducted

Resisted shoulder external rotation 163 External rotation Rotation Upright, adducted

Resisted shoulder external rotation 20 External rotation Rotation Upright, abducted

Resisted row 206 Row Row Bent over

Resisted triceps pull down 67 Elbow-extension Elbow-flexion Upright

Resisted lat pull down 194 Pull down Pull down Upright

Resisted lat pull down (external rotation) 1 Pull down Pull down Upright

Press up against wall 133 Press up Press up Upright

Resisted seratus anterior 2 Press up Press up Upright

Push up 3 Press up Press up Prone

‘Motion position’ and ‘simple motion position’ groupings are the same categories as listed for motion and simple motion, but further grouped 
by position information, e.g. motion position grouping of active shoulder flexion is flexion-upright, whereas simple motion position is elevation-
upright.
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sessions were excluded to ensure consistency in test sets 
throughout the analysis. As data were only labelled while 
patients performed physiotherapy exercises in-clinic, a 
size-matched proxy non-exercise activity class was used 
(ProxyA-OOD). The output was a binary prediction (exer-
cise/non-exercise). A range of ‘exercise groupings’ were 
evaluated (Table I).

Validation of OOD detection techniques was also 
performed on the unlabelled at-home dataset (five-fold 
cross-validation, splitting the dataset by study subject). 
Each OOD method was evaluated on a total of 25 
randomly selected records from five patients. Manual 
segmentation was performed to identify ground truth 
exercise periods. Four metrics were used to analyze 

results: AUROC, F1 score, sensitivity, and specificity. The 
F1 score is the harmonic mean of precision and recall, 
and thus is a more suitable metric for evaluation than 
accuracy in cases where there is an unbalanced dataset 
in terms of class representation. Records found to not 
include any exercises during the manual segmentation 
process were excluded from F1 score and sensitivity 
calculations. The effect of exercise groupings was also 
evaluated, but in-distribution classification accuracy 
was not assessed for the unlabelled at-home dataset as 
specific exercise class cannot be determined visually.

Fig. 1

(System) data collection and machine-learning pipeline for identification and classification of at-home shoulder physiotherapy exercises. OOD, out-of-
distribution.
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Results
Labelled in-clinic data.  Among non-proxy methods for 
OOD detection (Table II), patient-specific with engineered 
features performed best (AUROC = 0.924). Patient P3 had 
a more limited AUROC (0.830) with this method; seven of 
nine test records from P3 exhibited repetitive motion (e.g. 
Figure 3), but two did not (e.g. Supplementary Figure a), 
possibly indicating mistakenly collected or mislabelled 
recordings. Removing these two records from the test set 
raised the AUROC for this patient (0.938). Among proxy 
methods (Table  III), random forest with engineered fea-
tures performed best overall (AUROC = 0.985). Motion 
type groupings did not consistently improve OOD pre-
diction accuracy across algorithms.

Simple motion grouping yielded the best in-distri-
bution classification performance (Table  IV), with the 
highest accuracy (0.903) achieved by the patient-specific 
method with FCN embeddings. Use of FCN embeddings 
yielded an improvement over engineered features for the 
patient-specific method.
Unlabelled at-home data.  Analysis results for the at-home 
dataset are shown in Table V (no proxy in training) and 
Table VI (proxy in training). Training with the proxy data-
set provided more robust identification of ‘low-motion’ 
or rest activities between exercises, with mean specificity 

increasing from 0.507 (non-proxy methods) to 0.846. Of 
those proxy methods, FCN-supervised grouped by exer-
cise achieved the highest AUROC (0.919), although ran-
dom forest results are within the standard error.

In example record Figure  4a, FCN Softmax without 
proxy commits a Type II error, whereas FCN supervised 
in Figure 4b correctly predicts the low-motion exercise. 
These examples are representative of the overall impact 
of including proxy data as an additional training class.

Table  VII summarizes results of two algorithms by 
patient. Patients P0 and P4 in particular had minimal 
periods of non-exercise and performed at-home exer-
cises similarly to in-clinic (Figure 4). In contrast, patient 
P3 collected lengthy periods of non-exercise (Figure 5a) 
which was predicted as press-up (specificity = 0.445). 
Removing the P3 press-up record from the support 
set (Figure  5b) resulted in improved specificity (0.985, 
Figure  5c). However, this reduced exercise detection 
sensitivity for this patient from 0.404 to 0.328. The FCN-
supervised with proxy method performed similarly to the 
labelled in-clinic analysis in 3/5 patients.

Figures 6a and 6b illustrate examples of ML pipeline 
output following OOD detection and in-distribution 
classification.

Fig. 2

Patient-specific support method. In stage 1, Patient 0 is in the test split of the cross-validation fold. In stage 2, a feature extractor (e.g. fully convolutional 
network) is trained on the training split, while the last test fold session is used as ‘support’ data to train a K-Nearest Neighbour (KNN) algorithm on this more 
limited, but patient-specific, distribution. In stage 3, the data of the patient’s test session are transformed by the trained feature extractor and passed as input 
to the trained KNN algorithm to output the predictions of stage 4.

Table II. Out-of-distribution detection area under the receiver operating characteristic – no proxy in training.

Grouping KMeans - engineered KMeans - embedding
FCN Softmax 
threshold

Patient-specific - 
engineered

Patient-specific - 
embedding

Exercise 0.849 (0.017) 0.820 (0.019) 0.605 (0.033) 0.924 (0.014)* 0.914 (0.017)†

Motion 0.839 (0.020) 0.817 (0.023) 0.634 (0.036) 0.924 (0.014)* 0.905 (0.015)

Motion position 0.850 (0.018) 0.824 (0.019) 0.622 (0.020) 0.924 (0.014)* 0.910 (0.017)†

Simple motion 0.836 (0.022) 0.782 (0.031) 0.709 (0.035) 0.924 (0.014)* 0.884 (0.014)

Simple motion 
position

0.848 (0.018) 0.816 (0.040) 0.670 (0.028) 0.924 (0.014)* 0.902 (0.018)

Mean cross-validation AUROC with standard error in brackets for labelled in-clinic dataset.
*Highest AUROC obtained.
†Within standard error of highest AUROC result.
AUROC, area under the receiver operating characteristic; FCN, fully convolutional network.
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Discussion
Patient-specific participation measures generated by our 
system have been shown to be correlated to improve-
ments in patient outcomes (pain and disability).24 
However, patients often deviate in unexpected ways 
from their prescribed physiotherapy when at home, 
potentially impacting the success of their treatment 
programme.11,33-35 Most IMU-based rehabilitation moni-
toring solutions validate algorithm performance solely 
on labelled data collected in a supervised clinic or labo-
ratory setting.21,28,36 Confirming algorithm performance 
outside laboratory/clinical settings increases confidence 
for use in measuring at-home participation.

There is often greater variability in exercise tech-
nique among a patient population compared to healthy 
subjects. Variance in pain and restricted movement mani-
fest in a wide range of motion, speed, smoothness, motor 

control, and intensity of exercise, which elevates the 
challenge of accurate ML exercise classification. Patients 
may also perform exercises incorrectly at home, yielding 
substantially different sensor recordings versus in-clinic 
supervised data or expected norms, leading to a higher 
likelihood of ML misclassification.

Accurate monitoring of physiotherapy performance is 
essential, as this information may ultimately be incorpo-
rated into the patient medical record and influence care 
decisions. Patients may be demotivated by system or algo-
rithm issues, resulting in reduced participation scores.24 
While small differences in AUROC may have a negligible 
impact on system performance for inaccurate algorithms, 
the impact on error rate becomes more pronounced as 
algorithm accuracy is improved (e.g. improving accuracy 
from 98% to 99% halves error rate). Furthermore, small 
differences in overall algorithm performance may reflect 

Fig. 3

Sample accelerometer inertial data of resisted triceps pull down (standing) in the labelled test set collected in clinic by Patient P3. Acc-x, Acc-y, and Acc-z 
indicate acceleration in x, y, and z axes of the accelerometer.

Table III. Out-of-distribution detection area under the receiver operating characteristic – supervised classification via proxy out-of-distribution class in 
training.

Grouping
Random forest - 
engineered

Random forest - 
embedding FCN supervised

Patient-specific - 
engineered

Patient-specific - 
embedding

Exercise 0.984 (0.005)* 0.969 (0.009) 0.967 (0.010) 0.936 (0.011) 0.962 (0.013)

Motion 0.985 (0.005)† 0.971 (0.008) 0.972 (0.008) 0.937 (0.011) 0.961 (0.013)

Motion position 0.985 (0.005)† 0.969 (0.007) 0.973 (0.007) 0.936 (0.011) 0.957 (0.014)

Simple motion 0.985 (0.005)† 0.973 (0.006) 0.971 (0.009) 0.937 (0.011) 0.962 (0.012)

Simple motion 
position

0.985 (0.005)† 0.971 (0.006) 0.965 (0.007) 0.936 (0.011) 0.964 (0.012)

Mean cross-validation AUROC with standard error in brackets for labelled in-clinic dataset.
*Within standard error of highest AUROC result.
†Highest AUROC obtained.
AUROC, area under the receiver operating characteristic; FCN, fully convolutional network.
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Table IV. In-distribution classification accuracy results.

Grouping
Random forest - 
engineered

Random forest - 
embedding FCN supervised

Patient-specific - 
engineered

Patient-specific - 
embedding

Exercise 0.648 (0.030) 0.643 (0.043) 0.650 (0.035) 0.762 (0.040) 0.801 (0.028)

Motion 0.767 (0.020) 0.781 (0.028) 0.792 (0.020) 0.804 (0.031) 0.850 (0.018)

Motion position 0.683 (0.032) 0.699 (0.039) 0.703 (0.041) 0.780 (0.034) 0.802 (0.026)

Simple motion 0.865 (0.022) 0.871 (0.023) 0.883 (0.019) 0.849 (0.030) 0.903 (0.017)*

Simple motion 
position

0.740 (0.031) 0.750 (0.043) 0.769 (0.039) 0.797 (0.036) 0.822 (0.032)

Mean cross-validation accuracy with standard error in brackets for labelled in-clinic dataset.
*Highest accuracy obtained.
FCN, fully convolutional network.

Table V. Unlabelled at-home dataset out-of-distribution detection results - no proxy in training. Scores shown as mean of cross-validation with standard error 
in brackets.

Experiment Classification AUROC F1 Score Sensitivity Specificity

KMeans – Embedding Exercise 0.744 (0.049) 0.728 (0.058) 0.882 (0.050) 0.405 (0.071)

Motion 0.758 (0.045) 0.725 (0.046) 0.838 (0.053) 0.506 (0.072)

Motion position 0.755 (0.035) 0.711 (0.076) 0.866 (0.054) 0.414 (0.028)

Simple motion 0.703 (0.009) 0.708 (0.055) 0.838 (0.051) 0.387 (0.062)

Simple motion position 0.777 (0.041)* 0.734 (0.048) 0.877 (0.036) 0.477 (0.077)

KMeans – Engineered Exercise 0.682 (0.088) 0.717 (0.072) 0.734 (0.072) 0.519 (0.075)

Motion 0.680 (0.086) 0.728 (0.070) 0.762 (0.072) 0.488 (0.067)

Motion position 0.685 (0.086) 0.721 (0.070) 0.740 (0.074) 0.504 (0.068)

Simple motion 0.680 (0.087) 0.722 (0.075) 0.753 (0.080) 0.488 (0.064)

Simple motion position 0.688 (0.088) 0.726 (0.075) 0.749 (0.076) 0.517 (0.073)

FCN Softmax threshold Exercise 0.665 (0.034) 0.724 (0.058) 0.846 (0.046) 0.363 (0.062)

Motion 0.762 (0.049) 0.739 (0.056) 0.878 (0.039) 0.391 (0.069)

Motion position 0.721 (0.045) 0.729 (0.063) 0.863 (0.038) 0.372 (0.059)

Simple motion 0.765 (0.030) 0.742 (0.045) 0.858 (0.023) 0.447 (0.037)

Simple motion position 0.723 (0.041) 0.739 (0.050) 0.856 (0.035) 0.410 (0.058)

Patient-specific – Engineered Exercise 0.770 (0.082)* 0.751 (0.064) 0.728 (0.089) 0.702 (0.072)

Motion 0.770 (0.082)* 0.751 (0.064) 0.728 (0.089) 0.702 (0.072)

Motion position 0.770 (0.082)* 0.751 (0.064) 0.728 (0.089) 0.702 (0.072)

Simple motion 0.770 (0.082)* 0.751 (0.064) 0.728 (0.089) 0.702 (0.072)

Simple motion position 0.770 (0.082)* 0.751 (0.064) 0.728 (0.089) 0.702 (0.072)

Patient-specific – Embedding Exercise 0.807 (0.056)† 0.682 (0.051) 0.796 (0.088) 0.479 (0.158)

Motion 0.788 (0.051)* 0.688 (0.050) 0.779 (0.085) 0.547 (0.140)

Motion position 0.775 (0.056)* 0.668 (0.058) 0.778 (0.093) 0.444 (0.126)

Simple motion 0.777 (0.048)* 0.673 (0.062) 0.746 (0.109) 0.511 (0.157)

Simple motion position 0.803 (0.058)* 0.686 (0.053) 0.803 (0.086) 0.495 (0.140)

Performance of algorithm prediction versus manually labelled ground truth for at-home dataset.
*Within standard error of highest value obtained.
†Highest value obtained.
AUROC, area under the receiver operating characteristic; FCN, fully convolutional network.

Table VI. Unlabelled at-home dataset out-of-distribution detection results - proxy in training. Scores shown as mean of cross-validation with standard error in 
brackets.

Experiment Classifcation AUROC F1 Score Sensitivity Specificity

Random forest – Embedding Exercise 0.918 (0.028)* 0.824 (0.061) 0.859 (0.065) 0.811 (0.013)

Motion 0.918 (0.029)* 0.827 (0.058) 0.858 (0.061) 0.826 (0.016)

Motion position 0.916 (0.029)* 0.832 (0.060) 0.866 (0.066) 0.826 (0.018)

Simple motion 0.916 (0.028)* 0.824 (0.058) 0.857 (0.067) 0.805 (0.014)

Simple motion position 0.913 (0.029)* 0.814 (0.066) 0.841 (0.076) 0.810 (0.012)

Random forest – Engineered Exercise 0.904 (0.019)* 0.788 (0.050) 0.714 (0.056) 0.903 (0.014)

Motion 0.904 (0.019)* 0.796 (0.058) 0.736 (0.051) 0.889 (0.019)

Motion position 0.902 (0.020)* 0.798 (0.045) 0.732 (0.050) 0.900 (0.018)

Simple motion 0.906 (0.018)* 0.806 (0.043) 0.752 (0.046) 0.879 (0.020)

Continued
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large differences in accuracy achieved for individual 
patients.

Our investigation indicates that exercise perfor-
mance may deviate substantially comparing in-clinic 
and at-home settings for many patients. While patient P0 
performed exercises very similarly in both settings, data 
collected in clinic and at home differed for P2 and P3. 
We also observed records with hours of continuous data 
collection with periods of very little movement (Figure 5), 
highlighting the importance of robust OOD detection.

First-pass OOD prediction on the at-home dataset 
yielded numerous Type I and Type II errors. Including a 
proxy OOD class in training eliminated many of these 
errors. At-home results were similar to the labelled in-clinic 
analysis, indicating that Spars9x-OOD adequately simu-
lates at-home OOD data for the investigated records.

Improvements in OOD prediction in the patient-
specific approach when proxy data are not included in 
training demonstrate the value of leveraging sessional 
data. Narrowing training data to the subset of exercises 
performed by a patient in their most recent supervised 
session avoids the influence of large variances in exercise 
technique among all subjects. This approach also adapts 
to changes in exercise technique over the course of 

recovery. Furthermore, because exercises are assigned by 
physiotherapists based on specific patient needs, some 
exercises are assigned more often, leading to balance 
issues. This a major advantage of the patient-specific 
method, where the KNN is trained on a smaller subset 
of exercises. However, since the patient-specific method 
is dependent on a small support set, it is particularly 
susceptible to labelling errors. In Supplementary Figure 
a, inertial data patterns for resisted shoulder internal rota-
tion do not resemble other examples of this exercise in 
the dataset, indicating a likely labelling or collection error. 
Other records exhibited rest periods between exercise 
repetitions and/or non-exercise periods at the beginning/
end of an exercise set, which are labelled as exercise and 
segmented. Ideally, such non-exercise periods should be 
filtered out. While the patient-specific approach implic-
itly adapts to changes in distributions over subsequent 
sessions through retraining of the KNN algorithm, a 
comparison with domain adaptation techniques would 
be of interest for future work as these may be less suscep-
tible to the data issues mentioned.

Recently, we evaluated OOD detection methodology 
common in the image domain on human activity recog-
nition (HAR) datasets.26 A key finding was that engineered 

Experiment Classifcation AUROC F1 Score Sensitivity Specificity
Simple motion position 0.904 (0.019)* 0.798 (0.046) 0.737 (0.050) 0.890 (0.019)

FCN supervised Exercise 0.919 (0.035)† 0.812 (0.066) 0.821 (0.079) 0.853 (0.018)

Motion 0.917 (0.035)* 0.813 (0.064) 0.854 (0.072) 0.807 (0.027)

Motion position 0.915 (0.034)* 0.820 (0.060) 0.849 (0.061) 0.823 (0.025)

Simple motion 0.902 (0.040)* 0.811 (0.067) 0.849 (0.065) 0.779 (0.023)

Simple motion position 0.915 (0.035)* 0.822 (0.062) 0.854 (0.060) 0.817 (0.023)

Patient-specific – Engineered Exercise 0.825 (0.044) 0.771 (0.064) 0.750 (0.063) 0.828 (0.050)

Motion 0.825 (0.044) 0.772 (0.063) 0.750 (0.063) 0.828 (0.050)

Motion position 0.825 (0.044) 0.772 (0.063) 0.750 (0.063) 0.828 (0.050)

Simple motion 0.825 (0.044) 0.772 (0.063) 0.750 (0.063) 0.827 (0.050)

Simple motion position 0.825 (0.044) 0.772 (0.063) 0.750 (0.063) 0.827 (0.050)

Patient-specific – Embedding Exercise 0.818 (0.046) 0.774 (0.056) 0.722 (0.075) 0.882 (0.048)

Motion 0.814 (0.047) 0.765 (0.059) 0.713 (0.082) 0.873 (0.046)

Motion position 0.840 (0.042) 0.801 (0.048) 0.766 (0.063) 0.882 (0.050)

Simple motion 0.834 (0.040) 0.778 (0.061) 0.737 (0.073) 0.873 (0.034)

Simple motion position 0.842 (0.054) 0.793 (0.072) 0.752 (0.088) 0.894 (0.035)

Performance of algorithm prediction versus manually labelled ground truth for at-home dataset.
*Standard error of highest value obtained.
†Highest value obtained.
AUROC, area under the receiver operating characteristic; FCN, fully convolutional network.

Table VII. Unlabelled at-home dataset – by patient (area under the receiver operating characteristic).

Patient Patient-specific engineered features – no 
proxy in training

FCN supervised – proxy in training

P0 0.913 0.979

P1 0.838 0.947

P2 0.761 0.794

P3 0.458 0.896

P4 0.878 0.979

FCN, fully convolutional network.

Table VI.  Continued
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statistical features appear superior for OOD detection in 
some HAR datasets versus DL feature extraction, whereas 
for in-distribution classification DL features these usually 
performed better. These findings are generally supported 
by this in-clinic OOD and in-distribution analysis.

Grouping classes improves classification accuracy 
because exercises with similar motions produce similar 

data patterns. Mean in-distribution accuracy grouped by 
exercise classes was 0.701. Reducing class number from 
18 to 6 yields an expected accuracy of 0.751 based on 
random chance. Grouping by simple motion achieves a 
mean accuracy of 0.874, indicating accuracy gain due to 
exercise similarity. In contrast, grouping did not consis-
tently improve OOD prediction. Although not of benefit in 

Fig. 4

Sample performance of out-of-distribution (OOD) prediction of at-home physiotherapy exercise activity on two records of accelerometer inertial data 
from patient P0 with a) patient-specific support method with engineered features (without proxy dataset) (area under the receiver operating characteristic 
(AUROC) 0.907), and b) random forest – fully convolutional network embeddings with OOD proxy dataset in the training set (AUROC 0.968). The 
misclassified exercise shown in a) exhibits very little motion relative to the other exercises in that record. Improvements from including proxy in training were 
similar for all algorithms.
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Fig. 5

a) This record shows > five hours of data that appear to consist entirely of non-exercise, most of which is incorrectly predicted as exercise by the patient-
specific method with engineered features without proxy (specificity 0.445). When the supervised labelled press-up record of b) is removed from the support 
set for this record, the resulting improvement is shown in c) (specificity 0.985). Note that it was not only this particular press-up record that caused this issue, 
but also any previous press-up exercises that the patient performed in clinic at earlier dates that were substituted in support.
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this study, grouping similar classes will result in differing 
DL features and feature extractors that could yield non-
intuitive advantages in OOD prediction. Thus, choice of 
exercise grouping for OOD detection may depend on the 
investigated dataset and algorithms.

Results of some engineered feature algorithms in 
Table II and Table III are identical regardless of grouping. 
This result is specific to OOD prediction using classical 
models and engineered features (e.g. KNN in patient-
specific) where grouping is washed out when converted 

to OOD, as this is ultimately a binary prediction problem. 
One exception is KMeans, where redefining classes will 
change cluster centre locations, so samples may be 
assigned different labels.

Time-consuming manual segmentation was 
conducted on at-home data by only a single rater and 
was limited to 25 records. Ground truth labels were 
assigned to the unlabelled dataset after unsupervised 
data collection, resulting in uncertainty. For example, in 
Supplementary Figure b, visual recognition of exercise 

Fig. 6

Examples of out-of-distribution detection and in-distribution classification on record from patients a) P1 and b) P4 with fully convolutional network 
supervised with proxy in training, grouped by simple motion category.
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was challenging and yielded ML predicted labels opposite 
manual segmentation labels. However, the algorithm is 
clearly incorrect in other records from this patient, where 
no confusion exists regarding the validity of the manual 
segmentation. In the future, an interactive app could be 
used by patients in combination with the smartwatch to 
indicate when they are performing their at-home exer-
cises, yielding a labelled dataset. The implication of the 
low sample size and manual labelling of at-home inertial 
data is a greater uncertainty in the results of this portion 
of the study.

Missing data occurred when user or technical error 
resulted in unrecorded physiotherapy data or a poor-
quality recording. These errors occurred in approximately 
4% of data collections. Since reported algorithm accu-
racy neglects unrecorded therapy sessions, the overall 
system accuracy is overestimated.

A sensor re-sampling rate of 50  Hz was sufficient to 
accurately classify exercises performed by the rotator cuff 
patient population in this study, which performed repeti-
tions relatively slowly (mean 3.8 seconds (standard devi-
ation 2.3), right-skewed). Classifier performance could 
be degraded for other populations performing exercises 
more rapidly. To date, we have not specifically investi-
gated the effect of re-sampling rate on classifier perfor-
mance or its relationship to rate of exercise repetition.

Our system collects inertial data from a single IMU in 
a commercial smartwatch worn during shoulder physio-
therapy exercise performance. This facilitated at-home 
use of the system, and qualitative data suggested a 
high degree of compliance in wearing the watch when 
performing exercises.24 However, algorithm performance 
is dependent on sufficient sensor motion, and press-up 
exercises exhibit lower magnitude motion at this site. 
After excluding press-ups from support, the patient-
specific approach more accurately removed non-exercise 
periods. However, sensitivity decreased, likely due to 
difficulty identifying press-up exercises. While multiple 
sensors or differing sensor placement could ameliorate 
these issues, the ease of use and acceptability of the 
smartwatch motivate optimization of the current system 
workflow and analysis of this dataset.

Future research could combine supervised training 
using a proxy OOD dataset with other OOD detection 
techniques to potentially obtain an even more robust 
OOD identifier. Additionally, analysis on a larger patient 
dataset (collection currently ongoing) may yield a greater 
distinction between methods.

In summary, this study presented a ML pipeline for 
detecting and classifying in-clinic and at-home shoulder 
physiotherapy exercises, highlighting the use of a proxy 
dataset for accurate OOD detection. Leveraging patient-
specific data improves performance but is impacted by 
data quality. ML algorithm selection is key to an objective 
IMU-based system for tracking patient at-home adher-
ence. Deploying physiotherapy adherence monitoring 
systems requires ML algorithms to be validated in their 
ultimate use environment.

Supplementary material
‍ ‍Figures displaying sample accelerometer inertial 

data in the labelled test set collected in-clinic by 
Patient N3, and supervised fully convolutional 

network data with proxy prediction on record R0 of pa-
tient P2.
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