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Aims
Research on hip biomechanics has analyzed femoroacetabular contact pressures and forces
in distinct hip conditions, with different procedures, and used diverse loading and testing
conditions. The aim of this scoping review was to identify and summarize the available
evidence in the literature for hip contact pressures and force in cadaver and in vivo studies,
and how joint loading, labral status, and femoral and acetabular morphology can affect
these biomechanical parameters.

Methods
We used the PRISMA extension for scoping reviews for this literature search in three
databases. After screening, 16 studies were included for the final analysis.

Results
The studies assessed different hip conditions like labrum status, the biomechanical effect of
the cam, femoral version, acetabular coverage, and the effect of rim trimming. The testing
and loading conditions were also quite diverse, and this disparity limits direct comparisons
between the different researches. With normal anatomy the mean contact pressures ranged
from 1.54 to 4.4 MPa, and the average peak contact pressures ranged from 2 to 9.3 MPa.
Labral tear or resection showed an increase in contact pressures that diminished after
repair or reconstruction of the labrum. Complete cam resection also decreased the contact
pressure, and acetabular rim resection of 6 mm increased the contact pressure at the
acetabular base.

Conclusion
To date there is no standardized methodology to access hip contact biomechanics in hip
arthroscopy, or with the preservation of the periarticular soft-tissues. A tendency towards
improved biomechanics (lower contact pressures) was seen with labral repair and recon-
struction techniques as well as with cam correction.

Article focus
• Femoroacetabular contact pressures and

forces have been analyzed in distinct hip
conditions, with different procedures,
and used diverse loading and testing
conditions.

• A structured review is needed to clarify
the available evidence for the hip

contact pressure and force in cadaver
and in vivo studies.

Key messages
• The hip contact peak pressures ranged

from 2 to 9.3 MPa.
• A tendency to improved biomechanics

was seen with cam correction, labral
repair, and reconstruction.
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• There is no specific medical device to measure hip contact
pressure with the preservation of the periarticular soft-
tissues and joint capsule.

• Further research should focus on how intraoperative
measurement of contact force and pressure can be used to
confirm the restoration of joint biomechanics in hip
preservation surgery.

Strengths and limitations
• We summarize the available evidence for hip contact

pressure and force in cadaver and in vivo studies.
• The main limitation of this scoping review is related to the

heterogeneity of the included studies due to the different
studied conditions, testing and loading settings.

Introduction
Several hip conditions are due to abnormal biomechanics,
leading to premature articular damage and malfunction.
Therefore, understanding hip biomechanics is extremely
important, not only for assessing joint function but also for
hip preservation and reconstruction surgery.

Besides the morphological analysis of the hip joint,
there are several tools to assess hip biomechanics for research
purposes, such as hip contact pressures (CP) and forces (CF).
These parameters have been estimated in different types of
studies, such as cadaver studies with pressure monitoring
devices,1-4 clinical in vivo measurements with an instrumented
endoprosthesis,5,6 finite element analysis (FEA),7-11 or discrete
element models (DEA).12,13

Research performed in cadavers analyzed femoroace-
tabular CP in distinct hip conditions, with different proce-
dures, and used diverse loading and testing conditions. They
also assess how different surgical interventions influence
femoroacetabular forces and CP. Intraoperative assessment of
femoroacetabular CP and forces, before and after deformity
correction, can confirm the improvement of biomechanics
with the surgery and might decrease the need for revision
surgery due to residual deformity or abnormal mechanics.

The instrumented prosthesis studies recruited older
patients with different activity patterns compared to younger
patients with femoroacetabular impingement syndrome (FAI),
and they measured the pressure in metal on the cartilage
surface rather than cartilage on the native cartilage joint.

As in vivo data on the cam FAI biomechanics are scarce,
FEA studies have been used as a surrogate.7,10 A systematic
review of finite element simulations demonstrated an increase
in CP in the anterosuperior region of the acetabular cartilage.11

This scoping review aims to identify and summarize
the available evidence in the literature for hip CP and CF
in cadaver and in vivo studies, and how joint loading, labral
status, femoral and acetabular morphology can affect these
biomechanical parameters.

Methods
We used the PRISMA extension for scoping reviews for
this literature search.14-16 A thorough electronic database
search including studies published until 1 January 2022 was
performed by three authors (PD, SRG, AG) who independently
searched several databases (PubMed, Scopus, and Web of
Science). The study protocol was registered, and the descrip-
tion of the search strategy and screening process can be found

in the Open Science Framework.17 This literature search was
developed around ‘population’ (femoroacetabular impinge-
ment, FAI, FAIS, cam), ‘interventions’ (arthroscopy, surgery,
reconstructive surgery), ‘context’ (in vivo, cadaver), and the
measurements of interest (biomechanics, contact pressure,
stress, force).

We used the following search terms in different
combinations:

(Femoroacetabular impingement OR FAI OR FAIS OR
cam) AND (arthroscopy OR surgery OR reconstructive surgery)
AND (in vivo OR cadaver) AND (hip OR hip joint) AND
(biomechanics OR pressure OR stress OR force).

(Femoroacetabular impingement OR FAI OR FAIS OR
cam) AND (arthroscopy OR surgery OR reconstructive surgery)
AND (hip OR hip joint) AND (biomechanics OR pressure OR
stress OR force).

The reviewing process was limited to publications in
English. The sciwheel reference manager (Sage, UK) was used
to remove duplicates from multiple database searches.

A qualitative and quantitative synthesis of the included
articles was conducted and extracted data with the follow-
ing details: type of study, authors, year of publication, scope,
condition, number of participants, specimen preparation, type
of sensor and testing system used, parameters evaluated,
location of the measurements within the hip, applied load, hip
position, available results (CP, contact area, and peak force),
and the effect of the surgical intervention.

Results
After the duplicates were removed, 702 citations were
identified with the electronic database search and review
of the study’s references. Based on the title and abstract,
679 records were excluded because they did not meet the
inclusion criteria (e.g. studies on FEA or DEA, papers with
instrumented prostheses, and research that did not evaluate
joint pressure, force, or stress) (Figure 1). After screening, 16
studies were included for the final analysis. Relevant results
and study details are presented in Table I.

Type of study
A total of 15 studies were performed on cadaver specimens
using an open approach, and most of the cadaveric studies
stated that the extracapsular soft-tissues and capsule were
excised. Only a single study reported an in vivo measurement
of the femoroacetabular CP in hip arthroscopy.28

Some studies focused on how FAIS affects joint CP and
CF,2,3,29 while others evaluated these parameters in cadaveric
joints with no reported morphological deformity.4,18–26

Scope
Eight studies addressed the contact stress distribution.18–25

Four papers studied how the labrum status affects hip CP,1,4,26,27

and two discussed the cam biomechanical effect.2,28 One study
examined the effect of rim trimming,3 and another the role of
femoral version.29

Type of sensor
Fujifilm Prescale (Fujifilm, Japan) was used in six studies to
assess the contact area and contact stress in the hip joints.21,23–

26,29 A piezoresistive pressure mat was used in five studies,1–4,27

and permitted the assessment of the contact area, CP, and
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peak force. Specifically, the Tekscan model 5101 was used
in four of these studies, as a flat quadrangular matrix of
111.8 mm.

A small piezoresistive sensor was used in two stud-
ies,19,20 one study used a piezoelectric pressure transducer,22

and a further two studies used a displacement transducer and
a fibre optic microtransducer.18,28

Location of the sensors
The number and the location of the sensors were quite
different among the studies. In 12 studies, the sensor was
placed in the articular space between the femoral head and
the acetabular articular cartilage, in three studies the sensors
were located within the acetabulum,18,19,22 and in another
study, the sensors were in the femoral head.20

Biomechanical parameters
Different hip biomechanical properties were analyzed, and for
this review, we focused on the hip CP, contact area, and peak
forces. Four studies presented normalized CP and peak force
data without reference to the absolute values.1-4

Applied load
The applied load in the cadaveric works had considerable
differences. In some studies, a fixed load was used (350, 500,
700, or 1,334 N) while others used a progressive physiological
load or a load according to different activities (from half to four
times the body weight). In the only in vivo study, the load was
not quantified but could change with progressive hip flexion.28

Activities and hip position
In three studies, the authors tried to reproduce some instants
of the walking cycle.22,23,25 Other studies evaluated the hip

parameters in different degrees of joint flexion and extension,
abduction and adduction, and rotation,1,3,4,19,20,27–29 while others
accessed the hip parameters in just one position.2,18,21,24,26

For the neutral alignment, the specimen was mounted
in a testing machine in the anatomical position with 0° of hip
flexion and didn’t account for the pelvic tilt.30 In three studies
the acetabulum was positioned with a vertical acetabular
angle of 40° and pubic-femoral neck angle of 140°.1-3

There was a significant variation of pressures recor-
ded for different hip positions.19 Peak pressure was in the
ventrosuperior surface in the four phases of the gait cycle.25

CP was significantly higher at midstance than at heel-
strike or toe-off.25 For all labral conditions (intact, repaired,
and reconstructed) the highest average maximum pressure
occurred under hip external rotation.27 Normalized CP and
peak force in different hip positions (neutral, 20° of extension,
and 60° of flexion) did not show differences between labral
state.1 Satpathy et al29 studied the effect of femoral retrover-
sion and hip internal rotation, and concluded that 10° of hip
internal rotation had no significant effect on the posteroinfe-
rior joint peak forces.

Contact pressure
We found a wide variation of pressures recorded in differ-
ent hip positions and distinct acetabular sites. The pressure
was not uniform over the loaded area, and several stud-
ies registered higher pressures in the anterior and superior
segments of the acetabulum.18,21–25,29

For the different studies, the average mean pres-
sures were 1.5 MPa,18 2.9 MPa,20 3.5 to 4.4 MPa,26 and
with an intact acetabular rim of 0.1 MPa.3 The average
peak pressures were 3.5 MPa,18 8.8 MPa,20 2 MPa,21 5.3 to
8.5 MPa,22 8.3 MPa,23 5.4 to 7.7 MPa,25 6.3 to 7.1 MPa,26

Fig. 1
PRISMA flowchart.
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0.6 MPa,27 9.3 MPa (range 7.2 to 12.2 MPa),29 and the highest
pressures recorded were 5 MPa,18 10 MPa,23 and 9.8 MPa25

but these measurements were obtained with different loads
and different joint positions.

One study reported an extremely low mean CP of
0.1 MPa and used a load of 700 N,3  and another reported
a very low average peak pressure of 0.6 MPa with a load of
350 N.27

It should be noted that in the International System of
Units the unit for pressure is the pascal (Pa), which is equiva-
lent to one newton per square metre (N/m2).

Contact area
The contact area increased as the load increased, and the
maximum contact area was approximately 14 to 16 cm2.21 The
maximum contact area occurred with hip extension.23 With
the intact rim, the measured contact area was 8.3 cm2 at 20°
extension and 7 cm2 at 60° of flexion.3

The contact area for the explanted joint was signifi-
cantly lower in the anterior and posterior regions compared
to the intact configuration, where the hip joint was integrated
within the whole pelvis.24

There was a significant decrease in the contact area
after labral resection that improved after reconstruction,
although rarely reaching 100% of the native contact area.4

Surprisingly, Suppauksorn et al1 found that labral reconstruc-
tion had the smallest contact area when compared with the
other labral states (native, torn and repaired) using the same
loading and joint positions.

Peak force
With an  intact  acetabular  rim,  the  peak  force  was  18  N
at  20°  of  extension and 37  N  at  60°  of  flexion.3  Nor-
malized peak  force  in  three  different  hip  positions  did
not  show differences  between  labral  state  (native,  torn,
repair,  and reconstruction).1  Peak  force  demonstrated less
of  an  association with  the  differing labral  states  (intact,
deficient,  and reconstructed),  probably  because  peak  force
is  a  measurement  of  a  much smaller  area.4

Effect of the surgery – labrum
One study found no significant increase in the articular
pressure after labrectomy or after the removal of the labrum
and the transverse ligament. Interestingly, the mean and
maximum pressures in the posterior acetabulum decreased
significantly.26

In contrast, Lee et al4 found that labral resection
resulted in significantly altered biomechanical properties, with
large decreases in the contact area and increases in CP. Labral
reconstruction with graft significantly improved contact area
and CP toward the native state.4

In  the  work  by  Angsutanasombat  et  al,27  labral
repair  reduced the  CP in  all  conditions  except  adduction.
Additionally,  labral  reconstruction  reduced pressure  in  the
hip  socket  in  all  conditions  except  flexion and internal
rotation.

Suppauksorn et al1 concluded that labral reconstruc-
tion resulted in decreased intra-articular contact area and loss
of suction seal when compared with labral repair. The study
showed a trend to lower pressure and higher contact area in
labral repair compared to the labral reconstruction.

Effect of the surgery – bone correction
In an in vivo study, Kaya28 stated that correction of cam-
type deformity prevented the elevation of the hip CP during
forceful hip flexion.

In another cadaveric study, Suppauksorn et al2

concluded that normalized CP in complete cam resection was
lower than that of the native cam state as well as partial cam
resection.

Bhatia et al3 studied the effect of sequential rim
trimming and found that after 6 mm resection, the CP
decreased at the acetabular rim, but resecting more than 4
to 6 mm of the acetabular rim may dramatically generate a
three-fold increase in CP at the acetabular base. After a 6 mm
acetabular rim resection, the peak force decreased at the rim
at 60° of hip flexion and 20° of extension, but at the acetabular
base the peak force increased significantly.3

Satpathy et al29 analyzed the effect of femoral
retroversion on hip contact stress and concluded that femoral
neck retroversion increased hip contact stresses with visible
contact of the neck onto the acetabular rim.

Discussion
In this review, we focused on the femoroacetabular CP, CF, and
contact area, as abnormal hip biomechanics can predispose to
the development and progression of osteoarthritis.31,32 Most of
the studies evaluated the hip contact stress distribution. They
assessed different hip conditions such as the labrum status,
the biomechanical effect of the cam, the femoral version, the
acetabular coverage, and the effect of rim trimming.

Normal morphology
For most of the included studies in this review, the mean
CP ranged from 1.54 to 4.4 MN/m2 or MPa, and the average
peak pressures ranged from 2 to 9.3 MPa. This variance may
be related to the disparate applied load (100 to 3,600 N),
and diverse and few joint positions used in the studies and
constraints of different loading apparatus.33 The measured CP
is related to the joint load, but also to the joint position.

von Eisenhart et al25 recorded the highest CP at
midstance, which has a higher load (345% of the BW)
compared to heel strike (94% of the BW), but Afoke et al23

found higher CP with heel strike (3.3 × BW) than at flat foot
(1.3 × BW). The load direction relative to the pelvis was also
different: at heel-strike it was angled 2° dorsal and 22° medial,
at midstance 5° ventral and 11° medial, and at toe-off 7°
ventral and 20° medial.25 The site of the peak local contact
stress point was located within 30° of the line of action of
the joint load resultant.20 However, drawing any definitive
conclusions regarding the influence of the loading direction
on the magnitude of the contact stress is challenging due to
variations in the weight of the joint load.

Furthermore, areas of localized peak stresses might
be more significant than the average joint CP for cartilage
degeneration and longevity. Earlier studies were conduc-
ted before the widespread diffusion of descriptions of FAI.
Therefore, it is possible that certain hips considered to have
a normal morphology could in fact have had a FAI-related
deformity that went unrecognized.
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Labrum and FAI pathomorphology
Konrath et al26  found no significant increase in anterior and
superior articular pressure after the removal of the labrum
in neutral position (intact pelvis).  In Lee et al’s4  work,
after labral resection (hemipelvis),  the CP increased and
the contact area decreased significantly at 20° extension
and 60° of flexion, but these biomechanical properties
improved after labral reconstruction, although differently
from the native intact labrum. These differences might
reflect that the labral contribution to load bearing may
be more important in hip extension and flexion than in a
neutral joint position.

The labral status also influences other mechanical
properties of the hip joint like the suction seal, articular fluid
pressurization, and the joint distraction force.1,34 In line with
these findings, labral preservation and repair, when feasible, is
recommended.

The study by Suppauksorn et al2 analyzed the
biomechanical effect of the cam morphology, but did not
present absolute values for the parameters, so a comparison
with studies where the hips had a normal morphology is not
possible.

Complete cam resection decreased the load in the
chondrolabral junction and the CP, with a most significant
change in the 11 to 2 o’clock region of the acetabulum,
which is the most common site for chondral and labral
pathology in FAI patients.2,30,35 Femoral retroversion alters the
pattern of impingement, with the contact of the acetabular
rim with the anteroinferior femoral neck, which should be
considered during surgical planning.29,36 Nonetheless, there is
some concern that cam resection without capsular closure
could increase joint microinstability due to the disruption of
the labral seal in deep flexion.37

The FEA studies showed that cam FAI results in
substantially elevated CP,7,8,10,11 and in a DEA study the peak
contact stress normalized after accurate arthroscopic cam
correction.38 These in silico findings are in line with cadaver
research and patient outcomes in clinical studies.35,39

Compared to the other included studies that present
absolute values, Bhatia et al3 found a lower average mean
CP with an intact rim of 0.11 to 0.13 MPa with 20° of hip
extension and 60° of hip flexion, respectively. Joint position
and load might not explain these differences, but the lateral
centre-edge angle (LCEA) of 35.7° with increased acetabular
coverage might partially explain the lower CP. Interestingly,
this was the only study that presented absolute values for the
contact area, CP, and peak force with a Tekscan sensor.

Acetabular rim resection of 6 mm decreased the CP
and peak force at the acetabular rim, correcting the impinge-
ment, but at the same time dramatically increased the values
of these two parameters at the acetabular base.3 In the
FEA model of a severe pincer (protrusio), the acetabular
rim trimming increased the medial overload by 28%.40 The
optimal amount of rim trimming should be enough to correct
the impingement, but not too much to create instability or
increased joint load. A conservative rim resection (postoper-
ative LCEA 34.2° (SD 3.5°)) is also associated with a better
clinical outcome compared to a more extensive resection
(postoperative LCEA 28.5° (SD 5.3°)).41,42 These findings should
alert surgeons to the biomechanical effects of excessive rim
recession.

Sensors
Pressure-sensitive films measure the CP magnitude and
distribution between the femoral and acetabular cartilage.
The films have different pressure thresholds, and most of
the studies used the Fuji film Prescale (low-pressure film 2.5
to 10 MPa). These films have some disadvantages, such as
needing to be cut to adapt to the joint morphology, the film
thickness can interfere with the joint mechanics, and they
produce a static measurement of the highest pressure (peak)
recorded at different locations.33,43

Flat piezoresistive sensors, like the Tekscan model
5101, allow dynamic CP measurement and pressure distribu-
tion mapping, but conform better in joints with a modest
curvature. Sensor thickness and wrinkling inside the hip joint
can originate artefacts and inconsistencies, and these sensors
have a lower spatial resolution compared to the Fuji film
Prescale.43

There are several limitations in these cadaveric studies:
the soft-tissues and capsule excision, which influences joint
biomechanics,44 are necessary to adapt the flat sensor to the
hip joint geometry. Furthermore, the intra-articular presence
of the sensor may interfere with the joint biomechanics
and dynamics, leading to inaccuracies in the data recorded.
Other limitations are related to the hip morphology, as the
joint curvature affects the sensor’s performance, and joint
loading also generates shear forces that distort intra-articu-
lar sensor output. Furthermore, all cadaver studies used a
universal uniaxial testing machine, which does not reproduce
the physiological loading kinetics.

Kaya28 used a fibre optic microtransducer developed
for intracranial pressure monitoring to measure the hip CP in
hip arthroscopy, but no results were provided. This sensor was
used in vivo and allowed dynamic measurement of the CP
in anterosuperior femoroacetabular junction in different hip
positions. To the best of our knowledge, there is no specific
medical device to measure hip CP and force in hip arthro-
scopic surgery.

Anderson et al9 compared CP and areas measured
using pressure-sensitive film in a cadaveric hip, with the same
parameters evaluated by a FEA model created from CT scan
of the same cadaver hip. In the cadaver, the average pressure
ranged from 4.4 to 5.0 MPa, while FEA predicted an average
pressure ranging from 5.1 to 6.2 MPa. The subject-specific
FEA model provided a very reasonable prediction of the
CP magnitude and contact area when compared directly to
pressure film measurements in cadaver.9

DEA and FEA models generated from MRI in asympto-
matic subjects estimated the peak CP from 2.5 to 12.5 MPa.12

However, for the hip contact stress due to cam femoroacetab-
ular impingement, Ng et al11 found elevated CP (median of
10.4 MPa, range 8.5 to 12.2 MPa) in a systematic review of FEA
simulations.

These in silico studies and techniques can provide
a noninvasive estimation of joint mechanics in vivo, but
they present several limitations such as: small sample sizes;
exclusion of soft-tissues; ideal joint conditions and oversimpli-
fication of joint geometry; the techniques are subject-specific;
and the models use adapted material properties for bone and
cartilage.33

The limitations of this scoping review are mainly
related to the heterogeneity of the included studies due to
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the different studied conditions, testing, and loading settings.
Moreover, several studies presented normalized CP and peak
force data without reference to the absolute values, prevent-
ing comparison with other studies.1,2,4

To date, there is no published standardized methodol-
ogy to access hip contact biomechanics in hip arthroscopy
or with the preservation of the periarticular soft-tissues. The
mean hip contact pressures in cadaver studies ranged from
1.54 to 4.4 MPa and the average peak pressures ranged from
2 to 9.3 MPa. A tendency towards improved biomechanics
(lower CP) was seen with labral repair and reconstruction
techniques, as well as with cam correction. Excessive rim
recession significantly increased the CP and peak force at the
acetabular base. Intraoperative measurement of biomechani-
cal parameters could be used to confirm joint biomechanics
restoration.
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