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Intraosseous pressure
Although the blood supply of bone at 
rest has been well defined by Brookes and 
others,1–3 this was always in static or post-
mortem tissue. Denham4 and Day et al5 
recognized that several times body weight 
was transferred across joints during activity.
Joint surface pressures of many atmospheres 
have been measured. While activity appears 
to be the primary function of the skeleton, 
the way in which activity affects perfusion 
under joints has received little attention.6,7

Intraosseous pressure (IOP) has been 
studied in normal, avascular, and steroid-
treated models, but only under static condi-
tions.8-14 IOP has been recorded in association 
with forage decompression for painful and 
osteonecrotic bone conditions.15,16 Variation 
in IOP with drugs and on exsanguination has 
been found.17,18 IOP was thought to be raised 
in osteonecrosis, arthritis, and bone pain. 
However, there has been difficulty in defining 
normal IOP and using it effectively for clinical 
purposes.19

It is perhaps surprising that IOP is thought 
to be a constant, measurable by needle inser-
tion. No other solid organ has had internal 
pressure measured this way. Although IOP 
recordings vary considerably, they usually 
exhibit wave patterns synchronous with the 
arterial pulse, with respiration, and even with 
drug circulation time.20 IOP measurements in 
healthy bone are associated with a propor-
tional pulse pressure (PP), which suggests 
that IOP reflects conditions at the needle tip 
rather than being a constant throughout the 
bone.21

Needle clearance by the traditional Ficat 
method of flushing with saline damages the 
local circulation and causes a prolonged drop 
in IOP whereas, after clearance by aspiration, 
recovery is rapid. It is likely that the injection 
of saline into normal bone causes a fall in 

IOP due to blood, fat, saline, heparin, and 
bone fragments being injected back into the 
delicate vascular tree.22 Previous work which 
showed a raised IOP in ischaemic bone may 
have been measuring a raised IOP caused by 
the injection itself.16

Proximal arterial occlusion causes a drop 
in IOP and loss of the associated pulse pres-
sure, whereas proximal venous occlusion 
significantly raises IOP with preservation of 
the PP.21 The difference in pressure between 
the IOP with a proximal venous clamp in 
position, then with a proximal arterial clamp, 
gives a measure of perfusion achievable in 
the cleared volume at the needle tip.20 This 
novel biological concept does not appear to 
have been considered previously or applied 
elsewhere. In osteonecrotic or avascular 
bone the pressure difference is small, while 
in healthy bone the range is greater.20 This 
principle may be applied elsewhere, for 
example in compartment syndromes by 
using a proximal tourniquet.8 Irrespective of 
the initial needle pressure in a compartment, 
where the proximal venous to arterial occlu-
sion difference is large, there is a wide perfu-
sion range achievable at the needle tip. If the 
subtraction difference is small, perfusion at 
the needle tip is limited and decompression 
is more urgently required.

Load transmission
Although it has previously been suggested 
that bone might be hydraulically strength-
ened, early studies did not support this but 
their methods were far from physiological. 
For example, dried grease-saturated bone 
was used.5,23 When IOP is studied with phys-
iological loading in an animal model and in 
vitro, loading causes an instantaneous and 
proportional increase in subchondral IOP. 
During proximal arterial occlusion, the rise 
in IOP is reduced, and with proximal venous 
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occlusion there is a greater rise. With loading of one body 
weight the subchondral IOP is much higher than arterial 
pressure. In the animal model simultaneous recordings 
made at the femoral head, femoral condyle, and prox-
imal tibia show an IOP rise at all sites when loaded. Saline 
injections at those sites show that pressure is transmitted 
through the length of a bone but not across the joints.7,24 
In the perfused in vitro model, cyclical loading to simu-
late walking causes marked fluctuation in IOP against 
a falling background.25 Together these studies suggest 
that the subchondral bone is slightly flexible and that 
forces applied to the joint are transferred through the 
subchondral region partly by hydraulic pressure within 
a contained environment. These pressures can be very 
high.5 It is to be expected that there might be modifica-
tions to the subchondral circulation to prevent capillary 
and fat cell damage.

Anatomy
Burkhardt26 described normal bone histology and iden-
tified some features which might be pressure related, 
but there are no histological studies that look specifi-
cally for evidence of hydraulic pressure load transfer. 
The subchondral bone plate, capillaries, and trabec-
ulae are relatively delicate. Much of the subchondral 
tissue is composed of large thin-walled adipocytes or 
haemopoetic tissue. Orthopaedic surgeons are aware 
that bone fat is essentially oily or fluid at body tempera-
tures. Soft tissues would be capable of transferring 
pressure without suffering damage, provided that they 
are enclosed or contained and supported. The fine 
subchondral capillaries first described by Hunter (Hunt-
er’s mesentery) immediately below healthy cartilage 
are proportional in number to the thickness of the carti-
lage.27 About a centimetre below that in the subchon-
dral plane, there are previously undescribed radiating 
vessels, best seen on water bright MRI images running 
parallel to the articular surface.28 The marks are present 
in all water bright MRI joint scans but are best seen in 
the subchondral plane of the upper tibia in axial slices. 
Radiological opinion is that the marks are vascular. 
Histologically their position and orientation matches 
that of the axial plane radiating vessels. The vessels 
are present in the first subchondral upper tibial slice, 
peak at 6 mm to 10 mm depth, and are absent by 16 
mm depth. Histologically, where the vessels penetrate 
the cortex near the articular margin, there are complex 
distortions which could, under load, act as choke valves 
to prevent loss of blood from the cancellous interior.29 
Collectively these structures tolerate high pressures 
and pass the load by hydraulic pressure onto the larger 
trabeculae which converge onto the cortical shaft, 
transferring force along the shaft to the joint at the 
other end. There the reverse occurs, passing force from 
the shaft through the trabeculae, generating pressure 
in the subchondral region to support the joint surface.28

Osteoarthritis
There is an inverse relationship between the number of 
MRI marks and Kellgren-Lawrence grade of osteoarthritis, 
both medially and laterally.28 While cause and effect 
remain to be separated, the relationship between vascular 
disease, osteoarthritis (OA), and osteoporosis is of ortho-
paedic interest.30–32 Vasculomechanical mechanisms may 
explain other orthopaedic phenomena, for example 
the generally mutually exclusive nature of osteoporosis 
and OA. Several studies have suggested a link between 
subchondral bone health and OA.33–35 However, it may 
be that the softer subchondral bone of the osteoporotic 
patient flexes proportionately more and is thereby better 
perfused than the harder sclerotic bone found in OA.

In conclusion, we present a novel understanding of 
joint physiology and subchondral bone circulation. At 
rest, subchondral cancellous bone behaves as a perfused 
tissue with IOP being mainly due to arterial supply rather 
than venous back pressure or tissue turgor. A single 
measure of IOP is variable and meaningless, reflecting 
only conditions at the needle tip. The difference in IOP 
with proximal venous and arterial occlusion possibly 
offers a better method for assessing perfusion at the 
needle tip. A substantial proportion of the load applied 
to a joint is transmitted through hydraulic pressure to 
the trabeculae. Subchondral tissues and vascular struc-
tures are designed to support hydraulic forces. Vessels 
are lost in early OA, suggesting that vasculo-mechanical 
physiology in the subchondral region may play a role in 
the development of OA. Our proposition opens the door 
to novel means of research, diagnosis, surveillance, and 
prognosis and in due course potentially better treatments 
for OA.
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Supplementary material
‍ ‍Illustrations to expand on the editorial text.
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