

Supplementary Material

10.1302/2046-3758.1012.BJR-2021-0288.R2

Table i. Characteristics of the RCT studies included in the systematic review.

Study	Country	Objective	Intervention	Sample size, n (male/female	Mean age, yrs (SD)	Clinical outcome	Follow-up outcome	Complications	Key findings
Shuang et al, 2016	China	Distal intercondylar humeral fractures	A: 3D-printed plates (Format: Unite Boolean calculation 3D printer: SRP400B, Huasen 3D Printing Research, Changzhou, China) B: conventional plates) Total n = 13 (10/3)A: n = 6 (4/2) B: n = 7 (6/1)	A: 46.2 (11.6) B: 40.3 (10.9)	Operating time (mins): A (70.6 (SD 12.1)), B (92.3 (SD 17.4)), p = 0.026	Follow-up period (mths): 10.6 ROM of elbow: Flexion/extension (°): A (98 (SD 27)), B (93 (SD 24)), p = 0.730 Pronation/supination (°): A (160 (SD 17)), B (167 (SD 21)), p = 0.528 MEPS (point): A (85 (SD 9)), B (79 (SD 13)), p = 0.394 Rate of patients with excellent or good elbow function (%): A (83.1), B (71.4)	One patient in the conventional group experienced intraoperative traction injury of theulnar nerve. No wound infectionsor other complications were observed	3D method is both safe and effective for the treatment of adults with intercondylar humeral fractures and has a significantly shorter operative time comparedto conventional plates
Zheng et al, 2018	China	Pilon fracture	A: 3D printing group (Format: STL 3D printer: 3D ORTHO Waston Med, Inc., Changzhou, Jiangsu, China) B: conventional group	Total n = 93 (66/27) A: n = 45 (35/10) B: n = 48 (31/17)	A: 41.2 (9.3) B: 42.5 (9.0)	Operating time (mins): A (74.1 (SD 8.2)), B (90.2 (SD 10.9)), $p < 0.001$ Blood loss (ml): A (117.1 (SD 20.7)), B (159.8 (SD 26.5)), $p < 0.001$ Intraoperative fluoroscopy(times): A (7.6 (SD 2.2)), B (11.0 (SD 2.9)), $p < 0.001$ Rate of anatomical reduction (%): A (91.1), B (75), $p = 0.040$ Fracture union time (mths): A (5.0 (SD 1.1)), B (5.3 (SD	Follow-up period (mths): A (20.5 (SD 3.7)), B (19.9 (SD 3.3)) ROM of ankle: Ankle dorsiflexion (°): A (15.1 (SD 4.8)), B (14.2 (SD 5.0)), p = 0.409 Ankle plantar flexion (°): A (27.4 (SD 8.5)), B (25.9 (SD 8.7)), p = 0.394 VAS: A (2.6 (SD 0.9)), B (2.9 (SD 1.2)), p = 0.218 AOFAS score: A (87.4 (SD 8.7)), B (84.7 (SD 9.0)), p = 0.149	Total complication rate: A:15.6% (7/45) B: 20.8% (10/48),P=0.510	3D printing technology is both safe and effectivefor the treatment of adults with Pilon fractures. Two groups did not differ significantly in functional outcome at the last follow-up period

						1.2)), p = 0.314 Questionnaire: Overall satisfaction with the 3D printing model for doctors: 9.0 (SD 1.1)	Rate of excellent and good outcome in AOFAS (%): A (93.3), B (77.1)		
Chen et al, 2019	China	AO type C fractures of the distal radius	A: 3D model of distal radius fracture (Format: STL 3D printer: 3D ORTHO; Waston MedInc., Changzhou, Jiangsu, China) Printing materials: Polylactic acid B: routine treatment	Total n = 48 (31/17) A; n = 23 (14/9) B: n = 25 (17/8)	A: 38.7 (13.6) B: 40.7 (11.4)	Operating time (mins): A (66.5 (SD 5.3)), B (75.4 (SD 6.0)), $p < 0.001$ Blood loss volume (ml): A(41.1 (SD 7.5)), B (54.2 (SD 7.9)), $p <$ 0.001 Intraoperative fluoroscopy (times): A (4.4 (SD 1.4)), B (5.6 (SD 1.6)), p = 0.011 Questionnaire: Patients: 'How much do youknow about your fracture situation' ($p =$ 0.000) & 'How much do you know about your surgical plan' ($p =$ 0.001) Surgeons: 'Usefulness of the 3D prototype for communication with patients': (9.1 (SD 0.8)) & 'Overall usefulness of 3D printing models': (6.7 (SD 1.4))	Follow-up period (mths): A: 13.0 (SD 0.7) B: 13.1 (SD 0.7) ROM of wrist: extension (°): A (4.1 (SD 3.5)), B (3.8 (SD 3.1)), $p = 0.765$ Flexion (°): A (3.1 (SD 2.7)), B (3.6 (SD 2.7)), $p = 0.511$ Pronation (°): A (5.1 (SD 3.2)), B (4.5 (SD 3.7)), $p = 0.548$ Supination (°): A (4.4 (SD 3.3)), B (4.9 (SD 3.3)), $p = 0.613$ Ulnar deviation (°): A (20.9 (SD 1.7)), B (20.4 (SD 1.5)), $p = 0.309$ Palmar tilt (°): A (12.2 (SD 1.5)), B (12.7 (SD 1.9)), $p =$ 0.359 Radial styloid process (mm): A (12.6 (SD 1.9)), B (12.6 (SD 1.8)), $p = 0.987$ Gartland-Werley scores: A (75.7 (SD 15.5)), B (74.8 (SD 16.6)), $p =$ 0.211	N/A	3D printing models effectively help the doctors plan and perform the operation and provide more effective communication between doctors and patients. But cannot improve postoperative function compared withroutine treatment

Huang et al, 2020	China	Both- column acetabular fractures	A: 3D printing group (Format : STL 3D printer Prismlab Rapid400; Prismlab, Shanghai, China) B: conventional group	Total n = 40 (26/14) A: n = 20 (12/8) B: n = 20 (14/6)	A: 43.4 (11.6) B: 37.4 (12.7)	$\begin{array}{l} \textbf{Operating time (mins): A} \\ (130.8 (SD 29.2)), B (206.3 \\ (SD 34.6)), p < 0.001 \\ \textbf{Instrumentation time} \\ (mins): A (32.1 (SD 9.5)), B \\ (57.9 (SD 15.1)), p < 0.001 \\ \textbf{Blood loss (ml): A} (500 [400, 800]), B (1,050 [950, 1,200]), p < 0.001 \\ \textbf{Blood transfusion (ml): A: 0} \\ (0, 400), B: 800 (450, 950), p < 0.001 \\ \textbf{Intraoperative fluoroscopy} \\ (times): A (4.2 (SD 1.8)), B \\ (7.7 (SD 2.6)), p < 0.001 \\ \textbf{Time of bone union (wks): A} \\ (14.48 (SD 1.52)), B (15.85 \\ (SD 1.56)), p = 0.007 \\ \textbf{Number of the} \\ \textbf{approach: A} (35\%), B \\ (85\%), p < 0.05 \\ \end{array}$	Follow-up period (mths): A: 40.0 (SD 14.5) B: 45.2 (SD 15.2) Good reduction rate (%): A (80), B (30), p < 0.05 Hip joint function (excellent/good rate) (%): A (75), B (30), p < 0.05	Complication rate: (yes/total): A: 5% (1/20) B: 25% (5/20) p = 0.182	3D method can shorten the operation and instrumentation time, reduce blood loss, blood transfusion, and the time of intraoperative fluoroscopy; 3D printing is a more effective method than the conventional method to treat both-column acetabular fractures
You et al,2016	China	Complicated proximal humeral fractures (PHF)	A: 3D printing (Format: N/A Rapid prototyping equipment: 3D System Project 660Pro) B: thin-layer CT scan	Total n = 66 (27/39) A: n = 34 (15/19) B: n = 32 (12/20)	A: 66.09 (4.09) B: 66.28 (4.10)	Duration of surgery (mins): A (77.65 (SD 8.09)), B (92.03 (SD 10.31)), $p < 0.05$ Blood loss volume (ml): A (235.29 (SD 63.40)), B (281.25 (SD 57.85)), $p < 0.05$ No. of fluoroscopy (times): A (7.12 (SD 1.57)), B (10.59 (SD 1.36)), $p < 0.05$ Time to fracture union (wks): A (8.36 (SD 1.00)), B (8.50 (SD 1.22)), $p > 0.05$	Follow-up period (mths): A: 22.38 (SD 4.57) B: 22.19 (SD 4.91)	N/A	3D group had significantly smaller number of fluoroscopies, duration time of surgery and intraoperative blood loss volume, and reduce the potential injury fromsurgery and anaesthesia than the control group. 3D printing has shown great clinical feasibility of the treatment of complicated PHFs

Kong et al, 2020	China	Intra- articular DRFs	A: 3D model group (Format: STL) B: routine group	Total n = 32 (19/13) A: n = 16 (10/6) B: n = 16 (9/7)	A: 41.1 (6.4) B: 42.8 (5.1)	Operating time (mins): A (51.4 (SD 6.8)), B (63.5 (SD 5.9)), p < 0.001 Amount of intraoperative bleeding (ml): A (52.3 (SD 9.9)), B (74.2 (SD 10.3)), p < 0.001 Intraoperative fluoroscopy (times): A (4.2 (SD 1.3)), B (5.6 (SD 1.1)), p = 0.002	Follow-up period (mths): 6 ROM: Flexion (°): A (69.3 (SD 5.5)), B (68.4 (SD 7.2)), $p = 0.70$ Extension (°): A (61.2 (SD 9.8)), B (62.1 (SD 11.1)), $p = 0.81$ Radial deviation (°): A (24.8 (SD 5.1)), B (23.2 (SD 4.9)), $p = 0.38$ Ulnar deviation (°): A (22.0 (SD 6.9)), B (19.8 (SD 5.8)), $p = 0.35$ Pronation (°): A (78.0 (SD 14.5)), B (78.4 (SD 13.1)), p = 0.94 Supination (°): A (82.0 (SD 12.1)), B (79.9 (SD 16.3)), $p =$ 0.69 VAS score: A (0.9 (SD 0.2)), B (0.9 (SD 0.3)), $p = 0.91$ DASH score: A (23.8 (SD 8.1)), B (24.5 (SD 7.0)), $p =$	1 patient in B group experienced superficial wound infection, and 1 patient in each group showed loss of reduction, which required no surgical interference. No iatrogenic neurological symptoms or other complications were observed in both groups	3D printing technique help reduce operating time, amount of intraoperative bleeding, and times of intraoperative fluoroscopy. 3D printing technique is safe and effective for surgical treatment of intra- articular DRFs with volar plating and K- wire fixation
Feng et al,2020	China	Cervical spondylotic myelopathy with combination of multilevel developmenta l cervical spine canal etenosis	A: screw insertion assisted by the guidance of 3D printing templates (Format: MCS Printing material: nylon, Somos	Total n = 12 (10/2) A: n = 6 (5/1) B: n = 6 (5/1)	A: 57.67 (11.20) B: 67.17 (5.91)	Blood lost (ml): A(300.00 (SD 89.44)), B (350.00 (SD 137.84)), U value = 0.315 Operating time (mins): A(171.67 (SD 19.41)), B (175.83 (SD 26.16)), p = 0.760	Follow-up period: N/A JOA score: A (12.83 (SD 1.17)), B (11.83 (SD 0.98)), p = 0.140 Our criterion (excellent & good rate) (%): A (83.3), B (47.2), p = 0.001 Bayard's criterion (%): A (88.9), B (61.1), p = 0.014	No neurological complications or infections in both groups	3D printing model preoperatively allow comprehensive visualization of the cervical vertebrae and lateral mass and the individual surgical planning. 3D printing increased the accuracy of
Du et al, 2013	China	Hip OA	B: screw insertion by freehand A: patient-specific templates using a rapid prototyping technique (Format: STL)	Total n = 34 A: n = 16 (N/A) B: n = 18 (N/A)	N/A	N/A	Follow-up period: seven and ten days postoperatively Radiological evaluation (stem- shaft angle) (°): A (136.69 (SD	N/A	cervical lateral mass screw insertion The 3D template designed and constructed preoperatively can provide precise and dependable location
			B: conventional method				7.70)), B (121.22 (SD 10.69)), p = 0.001		for hip resurfacing femoral components during hip arthroplasty. Also, the 3D method ensured the valgus stem placement necessary for optimal outcomes

Merc et al, 2013	Slovenia	Degenerative disorders resultingin spondylo- lysis+/-listhesis or severe spinal stenosis	A: pedicle screws using drill guide templates (Format: STL 3D printing technology: SLS) B: screws using freehand technique under fluoroscopy supervision	Total n = 19 (9/10) A: n = 9 (4/5) B: n = 10 (5/5)	A: 59 (5) B: 62 (12)	$eq:spectral_set_set_set_set_set_set_set_set_set_set$	N/A	N/A	The 3D method significantly lowers the incidence of cortex perforation and is therefore potentially applicable in clinical practice, especially in some selected cases. However, the applied 3D method carries a potential for errors during manufacturing and practical usage and therefore still requires further improvements
Zhang et al,	China	Knee OA	A: computer- aided design of	Total n = 40 (26/14) A: n = 20	A: 63.3 (5.1) B: 62.1 (4.9)	Operating time (mins): A (46.8 (SD	Follow-up period (mths): 12	No obvious moving, and the	The navigation template produced
2016			navigation template group (NT) (Format: STL 3D printer: SPSS350B solid laser rapid prototyping machine (Shanxi Hengtong Intelligent Machine Co., China) B: CIP	(12/8) B: n = 20 (14/6)		9.1)), B (57.5 (SD 12.3)), p = 0.0086 Blood loss (ml): A (463.8 (SD 110.6)), B (478.6 (SD 105.4)), p = 0.6862 Coronal femoral angle: A (89.4 (SD 1.5)), B (87.3 (SD 3.8)), p = 0.0435 Coronal tibia angle: A (89.3 (SD 1.4)), B (88.1 (SD 1.9)), p = 0.0456 Posterior tibia slope: A (6.8 (SD 1.6)), B (10.9 (SD 4.6)), p = 0.0021	HSS scores: A (82.9 (SD 16.8)), B (72.8 (SD 10.9)), p = 0.0472	postoperative incision healed with no deep venous thrombosis, vascular or nerve damage, or cardiovascular complications	through mechanical axis of lower limb may provide a relative accurate and simple method for TKA

Sagittal femoral angle:

						A (89.1 (SD 1.8)), B (87.9 (SD 2.8)), p = 0.1445			
Hu et al, 2020	China	Cubitus varus deformity	A: 3D individualized navigation template group (Format: Boolean operation Printing material: medical polyactic acidmaterial) B: traditional surgery group	Total n = 35 (21/14) A: n = 16 (9/7) B: n = 19 (12/7)	A: 6.86 (1.84) B: 7.79 (2.51)	Operating time (mins): A (11.69 (SD 2.21)), B (22.89 (SD 3.94)), p < 0.001	Follow-up period (mths): 6 to 12 Average differences in postoperative carrying angles between affected and healthy sides (°): A (1.13 (SD 1.20)). B (4.21 (SD 2.27)), p < 0.001 Max. extension angle of elbow joint mobility (°): A (1.00 (SD 6.24)), B (2.00 (SD 6.51)), p = 0.648 Max. flexion angle of elbow joint mobility (°): A (126.3 (SD 5.33)), B (126.8 (SD 5.08)), p = 0.789 Bellemore criteria: p = 0.101	No complications, such as incision infection, non union, neurovascular injuries, pin track infection, and loss of reduction, occurred in both groups	This 3D template can simplify the surgical procedure, reduce the operating time, improve the surgical accuracy, and shorten the learning curve of new clinicians. However, elbow joint function did not significantly differ between the two groups
Sun et al, 2020	China	Advanced OA of the knee	A: patient-specific instrumentation group (Format: STL Laser rapid prototyping printer: UP BOX, Tiertime, China Printing material: polylactic acid) B: conventional TKA	Total n = 80 (15/65) A: n = 40 (8/32) B: n = 40 (7/33)	A: 68.7 (9.1) B: 67.6 (8.4)	Operating time (mins): $A(87.3 (SD 3.5))$, $B(73.6 (SD 4.4))$, p < 0.001 Drainage volume (ml): $A(258.7 (SD 11.8))$, $B(305.6 (SD 10.8))$, $p < 0.001$ Duration of drainage (hrs): A(24.5 (SD 3.8)), $B(23.6 (SD 4.8))$, $p > 0.05Depth of intramedullaryguide (cm): A(9.4 (SD 2.5)),B(20.4 (SD 3.6))$, $p < 0.001Varus deformity: A(8.8 (SD 2.5)), B(9.2 (SD 3.6)), p > 0.05$	Follow-up period (mths): 9.0 (SD 3.9) ROM: A (124.2 (SD 14.3)), B (123.4 (SD 12.0)), $p > 0.05$ HSS score: A (87.4 (SD 8.2)), B (86.3 (SD 7.6)), $p > 0.05$ AKS score: A (85.7 (SD 8.7)), B (84.1 (SD 7.2)), $p > 0.05$ PFA: A (0.5 (SD 0.3)), B (3.1 (SD 1.0)), $p < 0.001$ HKA: A (178.6 (SD 0.7)), B (178.8 (SD 0.8)), $p > 0.05$ PCA: A (0.4 (SD 0.2)), B (1.7 (SD 2.0)), $p < 0.001$	No intraoperative or early postoperative complications occurred in the PSI group and the conventional group	3D method had the advantages of correct alignment, as well as the disadvantages of prolonged operating time and higher cost. The clinical outcomes inthe short term of TKA assisted by 3D printing of PSI was satisfactory in the postoperative follow-up. However, further studies are needed to confirm the long-term clinical effects

Wu et al, 2020	China	CLAI	A: 3D printed template group (Format: STL Printing material: photosensitive resin material) B: traditional intraoperative fluoroscopy- guided method	Total N = 34 (14/20) A: n = 18 (7/11) B: n = 16 (7/9)	A: 26.5 (7.3) B: 23.6 (5.1)	Operating time (mins): A (51.9 (SD 3.6)), B (72.4 (SD 12.6)), p < 0.01 Intraoperative radiation exposure (times): A (1.34 (SD 0.6)), B (6.58 (SD 1.7)), p < 0.01	Follow-up period (month): A: 23 ± 3.6 B: 25 ± 2.8 Anterior drawer (stress radiography) (mm): A (1.9\pm 0.8), B(2.1\pm 0.5), P is NS Talar tilt test (stress radiography) (degrees): A (3.2\pm 0.6), B (3.4\pm 0.7), P is NS AOFAS score: A (95.2\pm 2.5), B(94.9\pm 2.2), P>0.01 Karlsson-Peterson score: A (94.7\pm 3.6), B (93.8\pm 4.1), P>0.01	N/A	The 3D template cohort group have shorter operation duration and fewer radiation exposures, suggest it is abetter alternative for the treatment of CLAI. Besides, no significant differences of the anterior talar displacement and the talar tilt angle between two groups
Yin et al, 2020	China	Scaphoid nonunion without displacement	A: 3D printing guide plate assisted fixation + arthroscopy bone grafting (Printer : Objet30 prime, Stratasys, MN, USA with a photopolymer of medical compatibility (MED610, Stratasys, MN, USA) B: fixation with intra-operative fluoroscopy + arthroscopy bonegrafting	Total n = 16 (15/1) A: n = 8 (8/0) B: n = 8 (7/1)	A: 28.0 (6.9) B: 35.0 (10.0)	Bone operating time (mins): A (69.4 (SD 15.3)), B (94.1 (SD 18.7)), p = 0.012	Follow-up period (mths): 6 ROM ratio (injured/healthy): Flexion-extension: A (0.78 (SD 0.12)), B (0.71 (SD 0.11)) Radioulnar deviation: A (0.68 (SD 0.14)), B (0.67 (SD 0.14)) Pronation-supination: A (1.00 (SD 0.12)), B (0.9 (SD 0.05)) Strength ratio (injured/healthy):Grip strength: A (0.88 (SD 0.09)), B (0.79 (SD 0.12)) Pinch strength: A (0.89 (SD 0.07)), B (0.85 (SD 0.06)) VAS: A (0.96 (SD 0.6)), B (1.73 (SD 0.84)) Modified Mayo scores: A (84.4 (SD 7.8)), B (72.5 (SD 10)) PRWE scores: A (9 (SD 7)), B (14.8 (SD 8.7))	N/A	3D printing is an effective clinical treatment option with a good union rate and wrist function recovery. But there is no statistical difference between 3D printing and conventional group about the changes of ROM ratios, strength ratios, or wrist function scores

Zhang et al, 2020	China	Thoracolum bar fracture	A: porous polyoxymethyle ne thermoplastic regulator combined with a 3D printed template (Format: STL 3D printer: Pulisheng Electromechanical Technology Co., Ltd., Shanghai, China) Material: Photosensitive resin) B: conventional PPSF	Total N = 40 (12/28) A: n = 20 (5/15) B: n = 20 (7/13)	A: 56.57 (5.50) B: 57.33 (4.63)	No. of pedicles successful pierced at first attempt: A (10), B (3), $p = 0.043$ No. of insertions before reaching the desired position(n): A (7.83 (SD 1.47)), B (17.50 (SD 1.87)), p < 0.01 Radiation dosage before reaching the desired position (mSv): A (0.45 (SD 0.10)), B (1.35 (SD 1.38)), $p < 0.01$ Operating time before reaching the desired position (mins): A (15.17 (SD 2.64)), B (29.50 (SD 2.43)), p < 0.01 Total operating time (mins): A (66.67 (SD 6.80)), B (95.50 (SD 7.18)), p < 0.01	Follow-up period: at one day before surgery, at day 1, day 7, month 1, and month 3 after surgery KA: A (5.83 (SD 0.75)), B (6.83 (SD 1.47)), $p = 0.169$ No. of vertebral pedicles damaged: A (1), B (8), $p = 0.029$ VAS Day 1: A (3.17 (SD 0.75)), B (6.50 (SD 0.55)), $p < 0.01$ VAS Month 3: A (1.33 (SD 0.52)), B (1.50 (SD 0.55)), $p = 0.60$ ODI Day 1: A (36.50 (SD 1.05)), B (43.67 (SD 1.97)), $p < 0.01$ ODI Month 3: A (14.17 (SD 0.76)), B (16.17 (SD 0.98)), $p = 0.627$	No significant nerve and vascular damage and no symptoms of nerve injury (p < 0.05)	3D group may improve the success of pedicle insertion in patients undergoing PPSF. In short term, 3D printing group reduced postoperative pain, which resulted in more rapid postoperative recovery
						Total radiation dosage of fluoroscopy (mSv): A (2.75 (SD 0.48)), B (4.82 (SD 0.75)), p < 0.01 Intraoperative blood loss (ml): A (86.50 (SD 5.32)), B (127.33 (SD 5.05)), p < 0.01			
Hasan et al, 2020	Sweden	OA Ahlbäck stages Ilto IV	A: cementless 3D-printed cruciate-retaining TKA (Format : STL Material : Tritanium (Stryker, Allendale, New Jersey, USA) B: cemented cruciate-retaining TKA	Total n = 69 (36/33)A: n = 35 (18/17) B: n = 34 (18/16)	A: 65 (5.7) B: 66 (6.3)	Surgery duration (mins): A(43 (SD 6.0)), B (45 (SD 4.6))	Follow-up period: at 3 mths, 1 yr, and 2 yrs follow-up KSS-Knee score: A (33 (SD 9.2)), B (30 (SD 8.9)), p = 0.117 KSS-Function score: A (61 (SD 5.9)), B (61 (SD 4.4)), p = 0.459 KOOS Symptoms: p = 0.459 More and recreation: p = 0.546 Quality of life: p = 0.725 FJS: p = 0.922 Mean migration: p = 0.497 MTPM at three, 12, and 24 mths (mm): A (0.52, 0.62, and 0.64), B (0.33, 0.42, and 0.47), p = 0.003	In the 3D group, oneimplant was revised due to pain and progressive migration, and one patient had a liner-exchange due to a deep infection	3D group of TKA migrate more than the conventional group in the first 2- year period. This difference was mainly due to a higher initial migration of the 3D group in the first 3 postoperative months. Also, a longer follow-upis required to study whether the biological fixation of the cementless implants will result in an increased long-term survivorship

Wei et al, 2020	China	Cervical spondylot ic myelopat hy	A: AVB fabricated by electron beam melting (3D printing techniques: EBM (Arcam AB, Sweden), Material: titanium alloy powder (Ti6Al4V, particle size 45 to 100 μm) B: conventional titanium mesh cage	Total n = 40 (25/15) A: n = 20 (14/6) B: n = 20 (11/9)	A: 55.2 (11.4) B: 53.8 (7.8)	N/A	Follow-up period (mths): 6 Rate of fusion (%): A (100), B (95), $p = 0.995$ Loss of height of the fusion segments: A (1.39 (SD 1.05)), B(2.39 (SD 1.68)), $p = 0.015$ Rate of severe subsidence (%): A (5), B (35), $p = 0.018$ Global lordosis (C2–7): A (17.9 (SD 5.0)), B (20.4 (SD 8.5)), $p = 0.136$ JOA scores: A (16.35 (SD 0.93)), B (15.35 (SD 1.81)), p = 0.019 Recovery rate (%): A (80.8 (SD 27.0)), B (69.1 (SD 25.1)), $p =$ 0.081 SF-36: A (66.3 (SD 18.2)), B (68.9(SD 13.4)), $p = 0.695$ Odom's criteria: $p = 0.716$	One patient in B group whose radiological studies showed signs of screw loosening	3D group has decreased loss of the height of the fusion mass and a lower rate for severe implant subsidence. 3D group has comparable clinical outcomes regarding improvement in neurological function and health-related quality of life to conventional group
--------------------	-------	---	---	---	---------------------------------	-----	---	--	---

Yang et al, 2016	China	Trimalleol ar fractures	A: 3D printing assisted-design group (Format : STL 3D printer : FlashForge Ltd., ZhengJiang, China). Printing material : Polylacti c acid (FlashForge Ltd., 1.75 mm in diameter) B: no 3D printing assisted-design group	Total n = 30 (16/14) A: n = 15 (N/A) B: n = 15 (N/A)	36.5	Operating time (mins): A (71 (SD 23)), B (98 (SD 20)), $p = 0.587$ Intraoperative blood loss (ml): A (65 (SD 26)), B (90 (SD 38)), p = 0.709 Overall satisfaction with the 3D prototype (doctors): 8.8 (SD 0.4) Usefulness of the 3D prototype for preoperative planning (doctors): 8.9 (SD 0.7) Overall satisfaction of the conversation (patients): 9.3 (SD 0.6)	N/A	N/A	3D printing can reflect the anatomy accurately, and effectively helps the doctors plan the operation and provide more effective communication between doctors and patients
Maini et al, 2018	India	Acetabul ar fractures	A: virtually pre- contoured 3D printed template (Format: STL Printing material: polylactic acid B: conventional method of manual contouring	Total n = 25 (23/2) A: n = 12 (11/1) B: n = 13 (12/1)	N/A	Duration of surgery (mins): A (111), B (119) Total blood loss (ml): A (467), B (525)	Follow-up period: N/A Postoperative reduction on radiographs: (anatomical reduction): A (5), B (3) (satisfactory): A (4), B (5) (poor): A (3), B (5) Postoperative reduction on NCCT (mm): A (3.76), B (4.09) Diff. of displacement on preoperative and postoperative NCCT(mm): A (12.43), B (9.408)	N/A	3D printing technologyreduced duration and invasiveness of surgery and improving the quality of reduction, which improve the outcomes of acetabular fracture surgery

Zheng et al, 2018 (2)	China	Calcaneal fractures	A: 3D-Printing Group (Format: STL 3D printer: 3DORTHOWaston Med Inc. Changzhou, Jiangsu, China) B: conventional group	Total n = 75 (44/31) A: n = 35 (19/16) B: n = 40 (25/15)	A: 44.5 (8.0) B: 46.7 (6.2)	Operation duration (mins): $A(71.4 (SD 6.8))$, B (91.3 (SD 11.2)), p < 0.0001 Blood loss volume (ml): A (226.1 (SD 22.6)), B (288.7 (SD 34.8)). p < 0.0001 Intraoperative fluoroscopy (times): A (5.6 (SD 1.9)). B (8.6 (SD 2.7)), p < 0.0001 Fracture union time (mths): A(3.0 (SD 0.3)), B (3.2 (SD 0.4)), p = 0.232 Overall satisfaction with the 3D printing model (doctors): 8.9 (SD 0.9) (patients): 9.1 (SD 0.8)	Follow-up period (mths): A: 14.9 (SD 1.9) B: 14.7 (SD 2.0) Radiological outcomes (angle restoration in postoperative andfinal follow up): Böhler angle (°): A (31.7 (SD 5.0)), B (27.5 (SD 4.3)), p = 0.0002 / A (32.5 (SD 4.6)), B (29.7 (SD 5.4)), p = 0.0160 Gissane angle (°): A (134.5 (SD 5.8)), B (138.0 (SD 6.6)), p = 0.0183 / A (129.6 (SD 6.0)), B (133.7 (SD 7.0)), p = 0.0085 Calcaneal width (mm): A (36.5 (SD 3.0)), B (38.5 (SD 2.8)), p = 0.004 / A (35.1 (SD 4.1)), B (37.1 (SD 3.9)), p = 0.0383 Calcaneal height (mm): A (42.3 (SD 3.5)), B (40.4 (SD 2.4)), p = 0.0065 / A (44.6 (SD 2.6)), B (41.9 (SD 2.2)), p < 0.0001 VAS score: A (2.6 (SD 0.9)), B (2.8 (SD 1.2)), p = 0.369 AOFAS score: A (87.6 (SD 7.6)), B (85.8 (SD 9.0)), p = 0.341 AOFAS: Rate of excellent and	A: 17.1% (6/35) B: 20% (8/40),p = 0.751	Surgery assisted by 3D printing technology can achieve better surgical outcomes and radiological outcomes inthe treatment of calcaneal fractures, suggesting that 3D printing technology is safe and effective for the treatment of calcaneal fractures. Also, 3D printing technology provides better communication between doctors and patients. But two groups did not differ significantly in functional outcome at the last follow-up period
							goodoutcome (%) : A (88.6), B (85), p = 0.910		
Zheng et al, 2018 (3)	China	Humeral intercondyl arfractures	A: 3D-printing group (Format : STL 3D printer: 3D ORTHO Waston MedInc. Changzhou, Jiangsu, China) B: conventional group	Total n = 91 (49/42) A: n = 43 (24/19) B: n = 48 (25/23)	A: 44.7 (4.8) B: 44.5 (4.5)	Operation duration (mins): A(76.6 (SD 7.9)), B $(92.0 (SD 10.5))$, p <	(85), $p = 0.910$ Follow-up period (mths): A: 15.3 (SD 2.0) B: 15.7 (SD 2.3) ROM of elbow (°): Flexion: A (115.2 (SD 17.1)), B(112.3 (SD 16.6)), $p = 0.416$ Extension: A (23.8 (SD 8.1)), B (24.8 (SD 7.9)), $p = 0.569$ Pronation: A (80.1 (SD 6.4)), B (80.7 (SD 8.1)), $p = 0.690$ Supination: A (81.3 (SD 7.6)), B (79.8 (SD 7.7)), p $= 0.382$ MEPS score: A (85.2 (SD 0.6))	Complication rate: A: 9.3% (4/43), B: 12.5% (6/48) Wound infections: A (3), B (4) Ulnar nerve paraesthesi a: A (1), B (2)	3D printing technology is safe and effective for the treatment of intercondylar humeral fractures. Also, 3D printing technology provides a better communication between doctors and patients. Yet, the two groups did not differ significantly in elbow function at the last follow-up period

			6.4)), B (22.8 (SD 5.1)), p = 0.279	

AKS, American Knee Society score; AOFAS, The American Orthopedic Foot and Ankle Society score; AVB, artificial vertebral body; CIP, conventional intramedullary positioning group; CLAI, chronic lateral ankle instability; DASH, The Disabilities of the Arm, Shoulder and Hand score; DRF, distal radius fracture; EBM, electronbeam melting; FJS, Forgotten Joint Score; JOA, Japanese Orthopaedic Association; HKA, hip-knee-ankle angle; HSS, Hospital for Special Surgery knee score; KA, kyphotic angle; KSS, Knee Society Score; MCS, Materialise Mimics; MEPS, The Mayo Elbow Performance Score; PCA, posterior condylar angle; PFA, patella transverse axis-femoral transepicondylar axis angle; PPSF, percutaneous pedicle screw fixation; PRWE, Patient-Rated Wrist Evaluation; OA, osteoarthritis; ODI, Oswestry Disability Index; ROM, range of motion; SD, standard deviation; SLS, selective laser sintering; STL, stereolithography; TKA, total knee arthroplasty; VAS, visual analogue scale.

	3D printing			Convent	ional appro	oach		Std. Mean Difference	Std. Mean Difference		
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl		
2.1.1 Upper limb											
Chen et al, 2019	66.5	5.4	23	75.4	6	25	5.4%	-1.53 [-2.18, -0.88]			
Hu et al, 2020	11.69	2.21	16	22.89	3.94	19	5.0%	-3.35 [-4.41, -2.28]	_		
Kong et al, 2020	51.4	6.8	16	63.5	5.9	16	5.2%	-1.85 [-2.70, -1.01]			
Shuang et al, 2016	70.6	12.1	6	92.3	17.4	7	4.7%	-1.33 [-2.58, -0.08]			
Yin et al, 2020	69.4	15.3	8	94.1	18.7	8	4.9%	-1.37 [-2.49, -0.25]	<u> </u>		
You et al, 2016	77.65	8.09	34	92.03	10.31	32	5.5%	-1.54 [-2.09, -0.99]			
Zheng et al, 2018 (3)	76.6	7.9	43	92	10.5	48	5.6%	-1.63 [-2.11, -1.15]			
Subtotal (95% CI)			146			155	36.4%	-1.74 [-2.13, -1.35]	•		
Heterogeneity: Tau ² =	0.11; Chi ^z	= 10.66	i, df = 6	(P = 0.10);	l² = 44%						
Test for overall effect: 2	Z = 8.81 (F	° < 0.00	001)								
2.1.2 Spine											
Feng et al, 2020	171.67	19.41	6	175.83	26.16	6	4.9%	-0.17 [-1.30, 0.97]	_		
Merc et al, 2013	143	113	9	176	90	10	5.2%	-0.31 [-1.22, 0.60]			
Zhang et al, 2020	66.67	6.8	20	95.5	7.18	20	4.9%	-4.04 [-5.16, -2.92]			
Subtotal (95% CI)			35			36	14.9 %	-1.50 [-3.90, 0.91]			
Heterogeneity: Tau ² =	4.22; Chi ^z	= 31.40	l, df = 2	(P ≤ 0.000	101); I ^z = 94	1%					
Test for overall effect: 2	Z = 1.22 (F	P = 0.22))								
2.1.3 Lower limb/pelvi	is										
Hasan et al, 2020	43	6	35	45	4.6	34	5.6%	-0.37 [-0.85, 0.11]			
Huang et al, 2020	130.8	29.2	20	206.3	34.6	20	5.3%	-2.31 [-3.13, -1.49]			
Maini et al, 2018	111.33	38.23	12	118.84	31.1	13	5.3%	-0.21 [-1.00, 0.58]			
Sun et al, 2020	87.3	3.5	40	73.6	4.4	40	5.4%	3.41 [2.72, 4.11]			
Wu et al, 2020	51.9	3.6	18	72.4	12.6	16	5.2%	-2.22 [-3.10, -1.34]			
Yang et al, 2016	71	23	15	98	20	15	5.3%	-1.22 [-2.01, -0.43]			
Zhang et al, 2016	46.8	9.1	20	57.5	12.3	20	5.4%	-0.97 [-1.63, -0.31]			
Zheng et al, 2018	74.1	8.2	45	90.2	10.9	48	5.6%	-1.65 [-2.12, -1.17]			
Zheng et al, 2018 (2)	71.4	6.8	35	91.3	11.2	40	5.5%	-2.09 [-2.66, -1.52]			
Subtotal (95% CI)			240			246	48.7 %	-0.84 [-1.93, 0.24]			
Heterogeneity: Tau ² =	2.61; Chi ^z	= 201.8	6, df = 1	B (P ≤ 0.00	1001); I ž = 9	96%					
Test for overall effect: 2	Z = 1.53 (F	P = 0.13))								
Total (95% CI)			421			437	100.0%	-1.28 [-1.92, -0.65]	◆		
Heterogeneity: Tau ² = 1	1.80; Chi ^z	= 266.7	'3, df = '	18 (P < 0.0	10001); I ^z =	93%					
Test for overall effect: 2	Z = 3.99 (F	° < 0.00	01)						-4 -2 U Z 4	oach	
Test for subaroup diffe	erences: C	:hi ⁼ = 2.0	36. df =	2 (P = 0.3)	1), ² = 15.3	3%			50 printing Conventional appr	oaun	

Figure a. The forest plot of subgroup analysis for operating time (mins). CI, confidence interval; IV, inverse variance; SD, standard deviation.

	3D printing			Convent	ional appro	ach		Std. Mean Difference	Std. Mean Difference		
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl		
4.1.1 Upper limb											
Chen et al, 2019	41.1	7.5	23	54.2	7.9	25	8.0%	-1.67 [-2.34, -1.01]	+		
Kong et al, 2020	52.3	9.9	16	74.2	10.3	16	7.5%	-2.11 [-3.00, -1.23]			
You et al, 2016	235.29	63.4	34	281.25	57.85	32	8.3%	-0.75 [-1.25, -0.25]	-		
Zheng et al, 2018 (3)	231.1	18.1	43	278.6	23	48	8.3%	-2.26 [-2.79, -1.73]			
Subtotal (95% CI)			116			121	32.1%	-1.67 [-2.45, -0.90]	•		
Heterogeneity: Tau ² = I	0.51; Chi ²	= 18.41,	df = 3 (P = 0.0004); I ² = 84%						
Test for overall effect: 2	Z = 4.26 (P	° < 0.0001	1)								
4.1.2 Spine											
Feng et al, 2020	300	89.44	6	350	137.84	6	6.9%	-0.40 [-1.55, 0.75]			
Zhang et al, 2020	86.5	5.32	20	127.33	5.05	20	5.1%	-7.72 [-9.60, -5.83]			
Subtotal (95% CI)			26			26	12.0 %	-4.02 [-11.19, 3.15]			
Heterogeneity: Tau² = :	26.14; Chi	i ^z = 42.22	, df = 1	(P < 0.000	01); I ² = 989	6					
Test for overall effect: 2	Z = 1.10 (P	P = 0.27)									
4.1.3 Lower limb/pelvi	s										
Huang et al, 2020	629.3	377.63	20	1,077.25	188.61	20	7.9%	-1.47 [-2.18, -0.76]			
Maini et al, 2018	466.7	123.04	12	525.38	203.15	13	1.1%	-0.33 [-1.13, 0.46]			
Sun et al, 2020	258.7	11.8	40	305.6	10.8	40	7.8%	-4.11 [-4.89, -3.32]	-		
Yang et al, 2016	65	26	15	90	38	15	7.9%	-0.75 [-1.49, -0.00]	1		
Zhang et al, 2016	463.8	110.6	20	478.6	105.4	20	8.1%	-0.13 [-0.75, 0.49]			
Zheng et al, 2018 (2)	117.1	20.7	45	159.8	26.5	48	8.3%	-1.77 [-2.26, -1.29]			
Zheng et al, 2018 (3)	226.1	22.6	35	288.7	34.8	40	8.2%	-2.08 [-2.65, -1.51]			
Subtotal (95% CI)	4 00. Ob 3	70.00	187		A). 17. 0.000	196	55.9%	-1.52 [-2.41, -0.63]	•		
Heterogeneity: Lauf = 1	1.32; Chi r	= 78.36,	ατ= 6 (``	P < 0.0000	1); i*= 92%						
l est for overall effect: 4	2 = 3.35 (H	' = 0.0008	3)								
Total (95% CI)			329			343	100.0%	-1.81 [-2.47, -1.15]	◆		
Heterogeneity: Tau ² =	1.29: Chi ≇	= 141.75	. df = 1	2 (P < 0.00	001); I^z = 92	%					
Test for overall effect: 2	Z = 5.40 (P	< 0.0000)1)	- (. 0.00					-10 -5 0 5 10		
Test for subaroup diffe	rences: C	hi ² = 0.50). df = 2	P = 0.78	. I ^z = 0%				3D printing Conventional approach		

Figure b. The forest plot of subgroup analysis for blood loss (ml). Cl, confidence interval; IV, inverse variance; SD, standard deviation.

	3D p	3D printing Conventional approach			Std. Mean Difference	Std. Mean Difference			
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
6.1.1 Upper Limb									
Chen et al, 2019	4.4	1.4	23	5.6	1.6	25	13.2%	-0.78 [-1.37, -0.19]	
Kong et al, 2020	4.2	1.3	16	5.6	1.1	16	11.6%	-1.13 [-1.89, -0.38]	_
You et al, 2016	7.12	1.57	34	10.59	1.36	32	12.8%	-2.33 [-2.96, -1.70]	_
Zheng et al, 2018 (3)	5.3	1.9	43	8.7	2.7	48	14.4%	-1.43 [-1.89, -0.97]	—
Subtotal (95% CI)			116			121	51.9 %	-1.42 [-2.04, -0.80]	◆
Heterogeneity: Tau ² = I	0.31; Chi	^z = 12.	.97, df=	: 3 (P = 0.00	05); I ^z = 77	'%			
Test for overall effect: 2	Z = 4.47 (P ≤ 0.1	00001)						
6.1.2 Lower limb/pelvi	s								
Huang et al, 2020	4.2	1.8	20	7.7	2.6	20	12.0%	-1.53 [-2.25, -0.82]	
Wu et al, 2020	1.34	0.6	18	6.58	1.7	16	7.6%	-4.11 [-5.35, -2.88]	
Zheng et al, 2018	7.6	2.2	45	11	2.9	48	14.5%	-1.30 [-1.75, -0.85]	
Zheng et al, 2018 (2)	5.6	1.9	35	8.6	2.7	40	14.1%	-1.26 [-1.76, -0.76]	
Subtotal (95% CI)			118			124	48.1 %	-1.85 [-2.66, -1.05]	◆
Heterogeneity: Tau ² = I	0.53; Chi [:]	^z = 18.	.74, df=	: 3 (P = 0.00	003); I ² = 8	34%			
Test for overall effect: 2	Z= 4.53 (P < 0.	00001)						
Total (95% CI)			234			245	100.0%	-1.60 [-2.06, -1.14]	◆
Heterogeneity: Tau ² = I	0.33; Chi [:]	^z = 31.	.82, df=	7 (P < 0.00	001); I ^z = 7	'8%		-	
Test for overall effect: 2	Z = 6.82 (P < 0.	00001)						-4 -Z U Z 4
Test for subaroup diffe	rences: (Chi ^z =		3D printing Conventional approach					

Figure c. The forest plot of subgroup analysis for fluoroscopy times. CI, confidence interval; IV, inverse variance; SD, standard deviation.

	3D	printin	g	Conventi	onal appr	oach		Std. Mean Difference	Std. Mean Difference	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% Cl	IV, Fixed, 95% Cl	
8.1.1 Upper limb										
You et al, 2016	1.95	0.23	34	1.98	0.28	32	18.5%	-0.12 [-0.60, 0.37]		
Zheng et al, 2018 (3)	3	0.3	43	3.1	0.4	48	25.3%	-0.28 [-0.69, 0.14]		
Subtotal (95% CI)			77			80	43.8%	-0.21 [-0.52, 0.10]		
Heterogeneity: Chi ² = (0.25, df=	1 (P =	0.62);	I ² = 0%						
Test for overall effect: 2	Z = 1.31 ((P = 0.1	19)							
8.1.2 Lower limb/pelvi	is									
Huang et al, 2020	3.38	0.35	20	3.7	0.36	20	10.2%	-0.88 [-1.54, -0.23]		
Zheng et al, 2018	5	1.1	45	5.3	1.2	48	25.9%	-0.26 [-0.67, 0.15]		
Zheng et al, 2018 (2)	3	0.3	35	3.2	0.4	40	20.2%	-0.55 [-1.02, -0.09]		
Subtotal (95% CI)			100			108	56.2%	-0.48 [-0.75, -0.20]	•	
Heterogeneity: Chi ² = 2	2.70, df=	2 (P =	0.26);	l ² = 26%						
Test for overall effect: 2	Z = 3.38 ((P = 0.1	0007)							
Total (95% CI)			177			188	100.0%	-0.36 [-0.57, -0.15]	◆	
Heterogeneity: Chi ² = 4	4.52, df=	4 (P =	0.34);	I² = 11%				_		
Test for overall effect: 2	Z = 3.40 ((P = 0.1	0007)						-1 -0.5 0 0.5 1 2D printing Conventional approach	
Test for subaroup diffe	erences:	Chi ² =	1.57. ď	f = 1 (P = 0)	21), ² = 3	6.2%			3D printing Conventional approach	

Figure d. The forest plot of subgroup analysis for bone union time (mths). CI, confidence interval; IV, inverse variance; SD, standard deviation.

	3D printing		Conventi	onal appr	oach	S	td. Mean Difference	Std. Mean Difference		
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% Cl	IV, Fixed, 95% Cl	
12.1.1 Upper limb										
Kong et al, 2020	0.9	0.2	16	0.9	0.3	15	12.4%	0.00 [-0.70, 0.70]		
Yin et al, 2020	0.96	0.6	8	1.73	0.84	8	5.5%	-1.00 [-2.06, 0.06]		
Subtotal (95% CI)			24			23	17.8%	-0.31 [-0.89, 0.28]		
Heterogeneity: Chi ² = 3	2.37, df =	1 (P =	0.12);	l² = 58%						
Test for overall effect: 2	Z = 1.02 (P = 0.3	31)							
12.1.2 Spine										
Zhang et al. 2020	1.33	0.52	20	1.5	0.55	20	15.8%	-0.31 [-0.94, 0.31]		
Subtotal (95% CI)			20			20	15.8%	-0.31 [-0.94, 0.31]		
Heterogeneity: Not ap	plicable							- / -		
Test for overall effect:	Z = 0.98 (P = 0.3	33)							
12.1.3 Lower limb										
Zheng et al, 2018	2.6	0.9	45	2.9	1.2	48	36.7%	-0.28 [-0.69, 0.13]		
Zheng et al, 2018 (2)	2.6	0.9	35	2.8	1.2	40	29.7%	-0.18 [-0.64, 0.27]		
Subtotal (95% CI)			80			88	66.4%	-0.24 [-0.54, 0.07]	◆	
Heterogeneity: Chi ² = I	0.09, df=	1 (P =	0.76);	I ² = 0%						
Test for overall effect: 2	Z=1.53 (P = 0.1	13)							
Total (95% CI)			124			131	100.0%	-0.26 [-0.51, -0.01]	◆	
Heterogeneity: Chi ² = 3	2.53, df =	4 (P =	0.64):	I²=0%						
Test for overall effect: J	Z = 2.07 (I	P = 0.0	D4) Ü						-2 -1 U 1 2	
Test for subaroup diffe	erences: (Chi ⁼=	0.07. d	f = 2 (P = 0)	.96), i ² = 0	%			3D printing Conventional approach	

Figure e. The forest plot of subgroup analysis for visual analogue scale (VAS). CI, confidence interval; IV, inverse variance; SD, standard deviation.

	3D	printin	g	Convention	onal appro	ach		Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
10.1.1 Upper limb									
Chen et al, 2019	75.7	15.5	23	74.8	16.6	25	7.6%	0.06 [-0.51, 0.62]	
Kong et al, 2020	23.8	8.1	16	24.5	7	16	5.1%	-0.09 [-0.78, 0.60]	
Shuang et al, 2016	85	9	6	79	13	7	2.0%	0.49 [-0.62, 1.61]	
Yin et al, 2020	84.4	7.8	8	72.5	10	8	2.0%	1.25 [0.15, 2.36]	
Zheng et al, 2018 (3)	85.2	9.6	43	83.1	10	48	14.4%	0.21 [-0.20, 0.62]	
Subtotal (95% CI)			96			104	31.1%	0.22 [-0.10, 0.54]	◆
Heterogeneity: Tau ² =	0.02; Chi	i ^z = 4.7	1, df = 4	(P = 0.32)	; I ² = 15%				
Test for overall effect: 2	Z = 1.36 ((P = 0.1)	18)						
10.1.2 Spine									
Feng et al, 2020	12.83	1.17	6	11.83	0.98	6	1.7%	0.86 [-0.35, 2.06]	
Wei et al, 2020	16.35	0.93	20	15.35	1.81	20	6.0%	0.68 [0.04, 1.32]	
Subtotal (95% CI)			26			26	7.7%	0.72 [0.15, 1.28]	-
Heterogeneity: Tau ² =	0.00; Chi	i ^z = 0.0	6, df = 1	(P = 0.80)	; I² = 0%				
Test for overall effect: 2	Z = 2.50 ((P = 0.0)	01)						
10.1.3 Lower limb									
Hasan et al, 2020	33	9.2	35	30	8.9	34	10.8%	0.33 [-0.15, 0.80]	+
Sun et al, 2020	87.4	8.2	40	86.3	7.6	40	12.7%	0.14 [-0.30, 0.58]	
Wu et al, 2020	95.2	2.5	18	94.9	2.2	16	5.4%	0.12 [-0.55, 0.80]	
Zhang et al, 2016	82.9	16.8	20	72.8	10.9	20	6.0%	0.70 [0.06, 1.34]	
Zheng et al, 2018	87.4	8.7	45	84.7	9	48	14.6%	0.30 [-0.11, 0.71]	+
Zheng et al, 2018 (2)	87.6	7.6	35	85.8	9	40	11.8%	0.21 [-0.24, 0.67]	
Subtotal (95% CI)			193			198	61.3%	0.28 [0.08, 0.48]	•
Heterogeneity: Tau ² =	0.00; Chi	i ² = 2.3	9, df = 5	5 (P = 0.79)	; I² = 0%				
Test for overall effect: 2	Z = 2.73 ((P = 0.0	006)						
Total (95% CI)			315			328	100.0%	0.29 [0.13, 0.45]	◆
Heterogeneity: Tau ² =	0.00; Chi	i ^z = 9.7	1. df = 1	2 (P = 0.64	4); I ² = 0%			•	
Test for overall effect: 2	Z = 3.64 ((P = 0.0)	0003)	v					
Test for subaroup diffe	erences:	Chi ⁼=	2.39. df	'= 2 (P = 0.	30). I^z = 16	6.5%			Conventional approach 3D printing

Figure f. The forest plot of subgroup analysis for functional score in upper limb, spine, and lower limb. CI, confidence interval; IV, inverse variance; SD, standard deviation.

Figure g. Trial sequential analysis for functional score. Trial sequential analysis (TSA) of 13 trials (black squares on the blue line) was shown to explore the effects of 3D printing on the follow-up functional scores compared to the conventional approach group. TSA showed the line of cumulative Z-curve (blue) crossed the conventional boundary (green) and trial sequential monitoring boundary (red curve), favouring 3D printing, as well as the required information size (red vertical line). The number of patients (n = 643) exceeded the required information size (n = 519).

References

1. Shuang F, Hu W, Shao Y, Li H, Zou H. Treatment of Intercondylar Humeral Fractures With 3D-Printed Osteosynthesis Plates. *Medicine (Baltimore)*. 2016;95: e2461.

2. Zheng W, Chen C, Zhang C, Tao Z, Cai L. The Feasibility of 3D Printing Technology on the Treatment of Pilon Fracture and Its Effect on Doctor-Patient Communication. *Biomed Res Int.* 2018;8054698.

3. Chen C, Cai L, Zheng W, Wang J, Guo X, Chen H. The efficacy of using 3D printing models in the treatment of fractures: a randomised clinical trial. *BMC Musculoskelet Disord*. 2019;20(65).

4. Huang JH, Liao H, Tan XY, et al. Surgical treatment for both-column acetabular fractures using pre- operative virtual simulation and three-dimensional printing techniques. *Chin Med J (Engl)*. 2020;133:395-401.

5. You W, Liu LJ, Chen HX, et al. Application of 3D printing technology on the treatment of complex proximal humeral fractures (Neer3-part and 4-part) in old people. *Orthop Traumatol Surg Res.* 2016;102:897-903.

6. Kong L, Yang G, Yu J, et al. Surgical treatment of intra-articular distal radius fractures with the assistance of three-dimensional printing technique. *Medicine* (*Baltimore*). 2020;99:e19259.

7. Feng S, Lin J, Su N, Meng H, Yang Y, Fei Q. 3-Dimensional printing templates guiding versus free hand technique for cervical lateral mass screw fixation: A prospective study. *J Clin Neurosci*. 2020;78:252-258.

8. Du H, Tian XX, Li TS, et al. Use of patient-specific templates in hip resurfacing arthroplasty: experience from sixteen cases. Int Orthop. 2013;37:777-782.

9. Merc M, Drstvensek I, Vogrin M, Brajlih T, Recnik G. A multi-level rapid prototyping drill guide template reduces the perforation risk of pedicle screw placement in the lumbar and sacral spine. Arch Orthop Trauma Surg. 2013;133: 893-899.

10. Zhang YZ, Lu S, Zhang HQ, et al. Alignment of the lower extremity mechanical axis by computer- aided design and application in total knee arthroplasty. *Int J Comput Assist Radiol Surg.* 2016;11:1881-1890.

11. Hu X, Zhong M, Lou Y, et al. Clinical application of individualized 3D-printed navigation template to children with cubitus varus deformity. J Orthop Surg Res. 2020;15:111.

12. Sun ML, Zhang Y, Peng Y, Fu DJ, Fan HQ, He R. Accuracy of a Novel 3D-Printed Patient-Specific Intramedullary Guide to Control Femoral Component Rotation in Total Knee Arthroplasty. *Orthopaedic Surg.* 2020;12(2):429-441.

13. Wu Q, Yu T, Lei B, Huang W, Huang R. A New Individualized Three- Dimensional Printed Template for Lateral Ankle Ligament Reconstruction. Med Sci

14. Yin HW, Feng JT, Yu BF, Shen YD, Gu YD, Xu WD. 3D printing-assisted percutaneous fixation makes the surgery for scaphoid nonunion more accurate and less invasive. *J Orthop Translat.* 2020;24:138-143.

15. **Zhang M, Li J, Fang T, et al.** Evaluation of a Three-Dimensional Printed Guide and a Polyoxymethylene Thermoplastic Regulator for Percutaneous Pedicle Screw Fixation in Patients with Thoracolumbar Fracture. *Med Sci Monit.* 2020;26: e920578.

16. Hasan S, van Hamersveld KT, Marang-van de Mheen PJ, Kaptein BL, Nelissen RGHH, Toksvig-Larsen S. Migration of a novel 3D-printed cementless versus a cemented total knee arthroplasty: two-year results of a randomized controlled trial using radiostereometric analysis. *Bone Joint J.* 2020;102-B(8):1016-1024.

17. Wei F, Xu N, Li Z, et al. A prospective randomized cohort study on 3D-printed artificial vertebral body in single-level anterior cervical corpectomy for cervical spondylotic myelopathy. *Ann Transl Med.* 2020;8(17):1070.

18. Yang L, Shang XW, Fan JN, et al. Application of 3D Printing in the Surgical Planning of Trimalleolar Fracture and Doctor-Patient Communication. *Biomed Res Int.* 2016, 2482086.

19. Maini L, Verma T, Sharma A, Sharma A, Mishra A, Jha S. Evaluation of accuracy of virtual surgical planning for patient-specific pre-contoured plate in acetabular fracture fixation. *Arch Orthop Trauma Surg.* 2018;138(4): 495-504.

20. Zheng W, Tao Z, Lou Y, et al. Comparison of the Conventional Surgery and the Surgery Assisted by 3d Printing Technology in the Treatment of Calcaneal Fractures. J Invest Surg. 2018;31(6):557-567.

21. **Zheng W, Su J, Cai L, et al.** Application of 3D-printing technology in the treatment of humeral intercondylar fractures. *Orthop Traumatol Surg Res.* 2018;104: 83-88.