header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

LUMBAR SAGITTAL ALIGNMENT AFTER OBLIQUE IMPLANTED TOTAL LUMBAR DISC REPLACEMENT

European Orthopaedic Research Society (EORS) 2015, Annual Conference, 2–4 September 2015. Part 2.



Abstract

Background

Oblique implantable total disc replacements (TDR) have been developed in an attempt to partially resect the anterior longitudinal ligament (ALL), together with additional partial resection of lateral annulus fibres. To date, the literature has not addressed the impact of the TDR oblique implantation on the lumbar spine sagittal alignment. The hypothesis of this study was that TDR at the L4-L5 level does not change the sagittal alignment and the range of motion of the lumbar spine when the implant is placed in accurate position.

Methods

Prospective single-center radiological investigation of L4/5 TDR inserted through an oblique approach for the treatment of disc disease. A series of 52 patients with a minimum of 2-year FU after oblique TDR at L4/L5 level was analysed for radiological changes in sagittal alignment and range of motion of the lumbar spine. The total sagittal lumbar lordosis (TSLL), the segmental sagittal lumbar lordosis (SSLL) of the operated level, and the range of motion of the TDR implant were determined in pre- and postoperative functional X-rays. The accuracy of the implant position was also evaluated.

Results

A total of 52 patients (mean age, 42.7) were available. There were no revision surgeries for general and/or device-related complications. Only a 28.8% of cases (n=15) showed a satisfactory position. Off-center lateralised implants were the most common misplacements. Axial malrotated TDR accounted for the 28.1% of cases. From 3 to 24 months of FU, differences in range of motion were found in the total L1-S1 flexion, and in the mean range of motion of the implant both improving significantly. TDRs showing unsatisfactory implantation in the radiological studies (71.8%) demonstrated similar lumbar and segmental range of motion in comparison to properly implanted TDRs.

Conclusions

Oblique implanted L4/L5 TDR significantly increases total lordosis while retaining segmental lordosis, independently of the accuracy of its intervertebral position. Oblique TDR maintains antero-posterior segmental and total balance in most cases. Further studies should evaluate whether this finding has any implication for the long-term outcome.

Level of Evidence

Level III