header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

TGF-Β2 KNOCKDOWN UNDER OSMOLARITY IMPROVES COLLAGEN EXPRESSION IN CHONDROCYTES

European Orthopaedic Research Society (EORS) 2015, Annual Conference, 2–4 September 2015. Part 1.



Abstract

Background

Treatment of cartilage defects requires in vitro expansion of human articular chondrocytes (HACs) for autologous chondrocyte implantation (ACI). During standard expansion culture (i.e. plasma osmolarity, 280 mOsm) chondrocytes inevitably lose their specific phenotype (i.e. collagen type II (COL2) expression). This de-differentiation makes them inappropriate for ACI. Physiological osmolarity (i.e. 380 mOsm) improves COL2 expression in vitro, but the underlying reason is unknown. However, an accepted key regulator of chondrocyte differentiation, transforming growth factor beta (TGFβ), is known to stimulate COL2 production. In this study we aimed to elucidate if TGFβ signaling could potentially be driving the COL2 expression under physiological culture conditions.

Material and methods

After informed consent was obtained, HACs were isolated from five osteoarthritis (OA) patients and cultured in cytokine-free medium of 280 or 380 mOsm, respectively, under standard 2D in vitro conditions with or without lentiviral TGFβ2 knockdown (RNAi). Expression of TGFβ isoforms, superfamily receptors and chondrocyte marker genes was evaluated by qRT-PCR, TGFβ2 protein secretion by ELISA and TGFβ bioactivity using luciferase reporter assays. Statistical significance was assessed by a student's t-test.

Results

TGFβ isoform expression was differentially altered by physiological osmolarity. Specifically, 380 mOsm increased TGFβ2 expression and protein secretion, as well as TGFβ activity. Upon TGFβ2 isoform-specific knockdown COL2 expression was induced. Physiological osmolarity and TGFβ2 RNAi also induced TGFβ1, TGFβ3 and their type I receptor ALK5.

Conclusions

We showed that TGFβ2 knockdown increases COL2 expression in human osteoarthritic chondrocytes in vitro, possibly through a regulatory feedback loop involving TGFβ1, TGFβ3 induction and an increased ALK5/ALK1 ratio. This study indicates that TGFβ signalling is involved in osmolarity-induced chondrocyte marker gene expression. Pharmacological targeting of this pathway holds potential to further improve future osmolarity-mediated phenotypic stabilisation in advanced cell-based cartilage repair strategies.

Level of Evidence

preclinical.

Disclosure

We have nothing to disclose.