header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

THE CUSTOM ACETABULAR COMPONENT: THE 3D PRINTED SOLUTION

The Current Concepts in Joint Replacement (CCJR) Winter Meeting, 14 – 17 December 2016.



Abstract

Revision of total hip arthroplasty (THA) is being performed with increasing frequency. However, outcomes of repeated revisions have been rarely reported in the literature, especially for severe defects. Cup revision can be a highly complex operation depending on the bone defect. In acetabular defects like Paprosky types 1 and 2 porous cementless cups maybe fixed with screws give good results. Modern trabecular metal designs improve these good results. Allografts are useful for filling cavitary defects. In acetabular defects Paprosky types 3A and 3B, impacted morselised allografts with a cemented cup technique produce good results. Difficult cases with pelvic discontinuity require reconstruction of the acetabulum with acetabular plates or large cup-cages to solve these difficult problems. However, there is still no consensus regarding the best option for reconstructing hips with bone loss. Although the introduction of ultraporous metals has significantly increased the surgeon's ability to reconstruct severely compromised hips, there remain some that cannot be managed readily using cups, augments, or cages. In such situations custom acetabular components may be required. Individual implants represent yet another tool for the reconstructive surgeon. These devices can be helpful in situations of catastrophic bone loss. Ensuring long-term outcome mechanical stability has a greater impact than restoring an ideal center of rotation.

We have done so far 15 3D Printed Individual Implants. All of them where Paprosky Type 3B defects, 10 with a additional pelvis discontinuity. The mean follow-up is 18 months. All implanted devices are still in place, no infection, no loosening.

However, despite our consecutive case series, there are no mid- to long-term results available so far. Re-revision for failed revision THA acetabular components is a technically very challenging condition.

The 3D Printed Individual Implants have a lot of advantages, like excellent surgical planning and a very simple technique (operative time, blood loss, instruments). They are a very stable construct for extensive acetabular defects and pelvic discontinuity.