header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

FEMORAL STEM MODULARITY: HOW I KICKED THE HABIT

The Current Concepts in Joint Replacement (CCJR) Winter Meeting, 14 – 17 December 2016.



Abstract

Modularity in femoral revision evolved to address the specific weaknesses in the execution and results of the early Wagner SL stem, namely dislocations and subsidence. With modularity, distal canal fit can be achieved independently, and the proximal geometry can be created to re-establish the leg length and offset. The benefits of modularity relate specifically to being able to modify a plan intra-operatively based on the conditions that are encountered in mid battle. Inherent in this concept is the principle of predictability. The extent to which the conditions of operation may change requires alternatives to manage those changes. More importantly we need to be able to predict how an implant will sit in the bone.

At the inception and with subsequent manifestations of modular fluted stems, our ability to predict where the final implant will seat based on the trial options that existed was poor. For this reason, some modular stem designs offered no trial. This was part of the imperative for modularity, so that if the implant set too high it could be easily removed with reaming a little deeper and put back in. If the stem sat more deeply than had been anticipated, the change could be compensated by an alteration in the proximal modular segment. Reproducible mid- to long-term results have been published with this type of stem. Potential negatives of the modular junction include stem breakage, fretting and corrosion, cost, and the need to accommodate a large sized proximal segment within the proximal femur. The most important feature in modern non-modular implants will be predictability. We need to be able to predict that the final reamer will sit at a particular level in the femoral bone, and the trial will reproduce this level, and the final implant will reproduce this level. More importantly, we need to be able to predict that implants will remain where they are put, and not subside.

Subsidence has been causally associated with implant under-sizing, which is an error in surgical execution. As such, design features that optimise the ability to achieve intimate and broad endosteal contact between the implant and the bone can help reduce subsidence. These include precise, sharp reamers, implants in 1 mm increments, and trials that reproduce the position of the final implant. A larger implant is less likely to break, and we recommend preparation for the largest implant that the diaphysis can accommodate, often evident in the tactile feedback from the reamer, and the quality of the reamed bone being removed. Reaming is performed eccentrically in the proximal femur, so as to engage the diaphysis optimally.

The need for a kink in the stem is important for modular stems, which have bulky proximal segments that can create conflict with the peritrochanteric bone in smaller patients. Non-modular stems can have a smaller proximal diameter, such that a straight stem can be accommodated in most revision cases.

Early follow-up of a modern non-modular stem has shown excellent clinical improvement and reproducible ingrowth. Subsidence of > 10 mm occurred in 6 hips (6%), which is a notable improvement in historical values for this stem type, but remain short of some reports with modular stems. Improvements in goals and techniques of reaming and implantation are surely part of the improvements that have been documented, as well as those yet to be realised. Predictability will lead to simplicity and intuitiveness.