header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

WHY CUT OFF YOUR HEAD? RESURFACE IT INSTEAD – AFFIRMS

The Current Concepts in Joint Replacement (CCJR) Winter Meeting, 14 – 17 December 2016.



Abstract

It's easy to say that hip resurfacing is a failed technology. Journals and lay press are replete with negative reports concerning metal-on-metal bearing failures, destructive pseudotumors, withdrawals and recalls. Reviews of national joint registries show revision risks with hip resurfacing exceeding those of traditional total hip replacement, and metal bearings fare worst among all bearing couples. Yet, that misses the point. Modern hip resurfacing was never meant to replace total hip replacement (THR). It was intended to preserve bone in young patients who would be expected to need multiple revisions due to their youth and high-demand activities. The stated goal of the developers of the Birmingham Hip Resurfacing (BHR) was to delay THR by 10 years. In the two decades that followed the release of BHR, this goal has been met and exceeded. Much has been learned about indications, patient selection, and surgical technique. We now know that this highly specialised, challenging procedure is best indicated in the young, active male with osteoarthritis, as a complementary, not competitive procedure, to THR.

Resurfacing has many advantages. First and foremost, it saves bone, on the day of surgery, and over the next several years by preventing stress shielding. Dislocations are very rare. Leg length discrepancy and changes in offset are avoided. Post-operative activity, including heavy manual labor and contact sports, is unrestricted. More normal loading of the femur and joint stability has allowed professional athletes to regain their careers. Femoral side revisions, if necessary, are simple total hips, and dual mobility constructs allow one to keep the socket.

Adverse reactions to metal debris (ARMD), including pseudotumors, have generated great concern. Initially described only in women, it was unclear whether the etiology was allergy, toxicity, or inflammation. A better understanding of the wear properties of the bearing, and its relation to size, anteversion, hip dysplasia and metallurgy, along with retrieval analysis, allow us to conclude that it is excessive wear due to edge loading which is the fundamental mechanism for the vast majority of ARMD. Thus, patient selection, implant selection and surgical technique, the orthopaedic triad, are paramount.

What has been most impressive are the truly exceptional results in young, active men. The worst candidates for THR turn out to be the best candidates for resurfacing. The ability to return to full, unrestricted activity is just as important to these patients as the spectacular survivorship in centers specializing in resurfacing. If they are unlucky and face a revision, they are not facing the life-changing outcomes of a long revision femoral stem. So if the best indication for hip resurfacing is the young, active male, let's look at the results of resurfacing these patients in centers with high volumes, using devices with a good track record, such as BHR. Several centers around the world report 10–18 year success rates of BHR in males under 50 at 98–100%. Return to athletics is routinely achieved, and even professional athletes have regained their careers.

Hip resurfacing doesn't have to be better than THR to be popular among patients. Just the idea of saving all that bone makes it attractive. In the young active male, however, the results exceed those of THR, while leaving better revision options for the future. This justifies its continued use in this challenging patient population.