header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

INTERACTION BETWEEN ILIOPSOAS TENDON AND DUAL MOBILITY LINERS DURING HIP EXTENSION: A FINITE ELEMENT ANALYSIS STUDY

The International Society for Technology in Arthroplasty (ISTA), 29th Annual Congress, October 2016. PART 2.



Abstract

Introduction

Dual-mobility (DM) liners provide increased range of motion and stability. However, large head diameters have been associated with anterior hip pain due to impingement with surrounding soft-tissues, particularly the iliopsoas. Further, during hip extension the liner can get trapped due to anterior soft-tissue impingement that resists rotation being imparted to the liner from posterior stem-liner contact. Over time this can cause liner rim damage, leading to intra-prosthetic dislocation of the small diameter inner head. To address this, an anatomically contoured dual mobility (ACDM) liner was designed to reduce the volume of the liner below the equator that can interact with soft-tissues (Fig. 1). In this study, we utilized finite element analysis to evaluate tendon-liner contact pressure and tendon stresses with ACDM and conventional designs during hip extension, wherein the posterior edge of liner is in contact with the stem while the anterior edge is exposed to the soft-tissue.

Methods

The average uniaxial stiffness (350 N/mm), and average dimensions (width × thickness = 14mm × 4mm) of 10 cadaver psoas tendon samples were determined in a separate study. The iliopsoas tendon was modelled as a Yeoh hyper-elastic material, and the material constants were tuned to match the experimental uniaxial test data. Cadaver specific FEA models were created for 5 specimens (10 hips) using computed tomography (CT) scans. The implant components were modeled as being rigid relative to the iliopsoas tendon. The iliopsoas tendon was modelled as extending from its insertion point on the lesser trochanter to the psoas notch on the pelvis for hip flexion angles of −15°, 0°, 15° and 30°. Appropriately sized DM components were implanted virtually for each specimen. Once placed in its proper position, the liner was rotated about the flexion axis until it contacted the stem posteriorly to represent its orientation during hip extension (Fig. 2). A 500N tensile load was applied to the iliopsoas tendon and the average/max stresses within the tendon, and average/max contact pressures between the tendon and liner were measured.

Results

At all hip flexion angles from −15° to 30°, the tendon-liner contact pressure and tendon stresses were lower with the ACDM liners compared to the conventional liner. Contact pressure and tendon stress decreased for both liner designs with increasing hip flexion angle. At −15° flexion angle, the average contact pressure was 42.3% lower (0.36Mpa), and the maximum contact pressure was 45.1% (8.5Mpa lower), with the ACDM compared to conventional liner design. Similarly, at −15° flexion angle the average vonMises pressure in the tendon was 32.5% lower (14.8Mpa), and the maximum vonMises stress in the tendon was 55.7% (159Mpa lower) with the ACDM design. (Fig 3).

Discussion

This study utilized cadaver specific FEA models to evaluate interaction between the iliopsoas tendon and conventional and ACDM liners during hip extension. The results showed a notable reduction in contact pressure and tendon stress resulting from reduced volume and more soft-tissue friendly profile of the ACDM design. Thus, the ACDM design may be able to reduce undesirable soft-tissue interaction with dual mobility liners.


*Email: