header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

DOES THE CUSTOM-MADE ACETABULAR PROSTHESIS REPRODUCE A PRE-OPERATIVE SURGICAL PLANNING? A CADAVER STUDY

The International Society for Technology in Arthroplasty (ISTA), 29th Annual Congress, October 2016. PART 2.



Abstract

Introduction

The number of total hip arthroplasties has been increasing worldwide, and it is expected that revision surgeries will increase significantly in the near future. Although reconstructing normal hip biomechanics with extensive bone loss in the revision surgery remains challenging. The custom−made acetabular component produced by additive manufacturing, which can be fitted to a patient's anatomy and bone defect, is expected to be a predominant reconstruction material. However, there have been few reports on the setting precision and molding precision of this type of material. The purpose of this study was to validate the custom−made acetabular component regarding postoperative three−dimensional positioning and alignment.

Methods

Severe bone defects (Paprosky type 3A and 3B) were made in both four fresh cadaveric hip joints using an acetabular reamer mimicking clinical cases of acetabular component loosening or osteolysis in total hip arthroplasty. On the basis of computed tomography (CT) after making the bone defect, two types of custom−made acetabular components (augmented type and tri−flanged type) that adapted to the bone defect substantially were produced by an additive manufacturing machine. A confirmative CT scan was taken after implantation of the component, and then the data were installed in an analysis workstation to compare the postoperative component position and angle to those in the preoperative planning.

Results

The mean absolute deviations of the center of the hip joint between preoperative planning and the actual component position in the augmented type were 0.7 ± 0.4 mm for the horizontal position, 0.2 ± 0.1 mm for the vertical position, and 0.5 ± 0.3 mm for the antero−posterior position. The mean absolute deviations of the center of the hip joint in the tri−flanged type in the horizontal, vertical, and antero−posterior positions were 1.0 ± 0.4 mm, 0.4 ± 0.2 mm, 0.3 ± 0.1 mm, respectively. The mean absolute deviations of the component angle were 3.5° ± 0.9° at inclination and 2.0° ± 1.7° at anteversion in the augmented type and 0.6° ± 0.5° at inclination and 0.9° ± 0.3° at anteversion in the tri−flanged type.

Conclusion

Since custom−made orthopaedic implants produced by additive manufacturing can support individual anatomy and bone defect, this type of implant is expected to be applied to revision surgery and bone tumor surgery for severe bone defects. The present study demonstrated that preoperative planning of the center of the hip joint was successfully reproduced after the implantation of both types of custom−made acetabular components. In the tri−flanged type, better satisfactory results were provided in the component position and angle by comparing the past CAOS tools such as a surgical navigation system and a patient−specific guide. There is scope for further improvement, but the custom−made acetabular component produced by additive manufacturing may become very useful reconstruction material in hip revision surgeries. Problems to be addressed in the future include the improvement of the reproducibility of the preoperative planning and investigation of long−term clinical results.


*Email: