header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

BEARING COMPONENT RESPONSE TO PHYSIOLOGIC LOADING IN THREE COMMON TOTAL ELBOW REPLACEMENT SYSTEMS

The International Society for Technology in Arthroplasty (ISTA), 29th Annual Congress, October 2016. PART 1.



Abstract

INTRODUCTION

Aseptic loosening is the most common failure mode for Total Elbow Arthroplasty (TEA) and is considered to be associated with accelerated polyethylene bearing wear [1, 2]. This study aimed to evaluate three commercially available implant designs under loads associated with daily living. The hypothesis was that more recent designs (Discovery and Nexel) provide greater articular contact areas resulting in lower polyethylene stresses compared to the Coonrad/Morrey (CM).

METHODS

Motion tracking was performed on a healthy volunteer during elbow flexion at 0, 45, and 90° shoulder abduction because most daily activities occur with some shoulder abduction [3] resulting in varus stress about the elbow. This kinematic data was used in an OpenSim upper extremity musculoskeletal model [4] to estimate muscle and joint reaction loads with 5lb in hand, consistent with the common clinical restrictions following TEA.

Computer aided assemblies of the smallest size implants for each system were imported to ANSYS for finite element analysis. Metallic components were treated as rigid and polyethylene components were modeled using a nonlinear elastoplastic constitutive model calibrated to material data. Articular contacts were frictional. Physiologic joint reaction forces and moments quantified in OpenSim were applied and the resulting peak articular contact area and peak bearing von Mises stresses were assessed.

RESULTS

Simulated deformation patterns of CM bearings corresponded well to those reported in retrievals studies [1, 2] supporting the clinical relevance of the modeling approach.

Peak stresses for CM and Nexel were consistently found in the central and side bearings respectively. The central bearing stresses remained 2–2.6 times lower in Nexel compared to CM.

Peak stress for all three TEA systems increased with shoulder abduction (Fig.1, 2). Highest peak stresses (Fig.2) were obtained in CM and consistently exceeded the polyethylene yield limit; CM showed the lowest contact area (Fig.3). Nexel and Discovery experienced peak polyethylene stresses 26–34% and 17–39% lower than CM respectively (Fig.2).

DISCUSSION

Our results support the hypothesis that newer TEA systems provide increased articular contact area and reduced bearing stresses during physiological loading.

The cylindrical CM central bearing carries both the joint reaction force and moment leading to edge loading and high stresses (Fig.1). The design of the Nexel central bearing provides limited resistance to varus-valgus moment, thus transferring the moment to the side bearings and reducing central bearing stresses.

The hemispherical Discovery bearing design was confirmed to offer a large articular contact area. However, non-concentricity of the contact spheres can lead to edge loading and high polyethylene stresses under off-axis forces.

CM and Discovery utilize conventional polyethylene, whereas Nexel utilizes highly cross-linked Vitamin-E polyethylene. This study does not account for the increased wear resistance of Vitamin-E as compared to conventional polyethylene [5]. Long term clinical data are needed to demonstrate how these wear properties, as well as the geometric design which has been shown to impact stresses and contact patterns, translate to in vivo performance.

For figures, please contact authors directly


*Email: