header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

A NOVEL METHOD FOR VALIDATING TOTAL KNEE ARTHROPLASTY (TKA) TIBIAL COMPONENT ORIENTATION VIA GYROSCOPES

The International Society for Technology in Arthroplasty (ISTA), 29th Annual Congress, October 2016. PART 1.



Abstract

Introduction

For nearly 58% of total knee arthroplasty (TKA) revisions, the reason for revision is exacerbated by component malalignment. Proper TKA component alignment is critical to functional outcomes/device longevity. Several methods exist for orthopedic surgeons to validate their cuts, however, each has its limitations. This study developed/validated an accurate, low-cost, easy to implement first-principles method for calculating 2D (sagittal/frontal plane) tibial tray orientation using a triaxial gyroscope rigidly affixed to the tibial plateau of a simulated leg jig and validated 2D tibial tray orientation in a human cadaveric model.

Methods

An initial simulation assessed error in the sagittal/frontal planes associated with all geometric assumptions over a range of positions (±10°, ±10°, and −3°/0°/+3° in the sagittal, frontal, and transverse planes, respectively). Benchtop experiments (total positions - TP, clinically relevant repeated measures - RM, novice user - NU) were completed using a triaxial gyroscope rigidly affixed to and aligned with the tibial tray of the fully adjustable leg-simulation jig. Finally, two human cadaveric experiments were completed. A similar triaxial gyroscope was mounted to the tibial tray of a fresh frozen human cadaver to validate sagittal and frontal plane tibial tray orientation. In cadaveric experiment one, three unique frontal plane shims were utilized to measure changes in frontal plane angle. In cadaveric experiment two, measurements using the proprosed gyroscopic method were compared with computer navigation at a series of positions. For all experiments, one rotation of the leg was completed and gyroscopic data was processed through a custom analysis algorithm.

Results

Mathematical simulations showed that over the range of tested orientations, error from our geometric assumptions would be less than 1° and 0.2° in the sagittal and frontal planes, respectively. Results of all bench-top experiments are shown in Figure 1. The average angular error during the TP experiment (black bars) was 1.09°±0.80° and 0.60°±0.46° in the sagittal/frontal planes. The average angular error during the RM experiment (white bars) in the sagittal/frontal planes was 0.27°±0.25° and 0.30°±0.23°. The average angular error from the NU experiment (grey bars) in the sagittal/frontal planes was 1.50°±1.57° and 0.82°±0.77°. During cadaveric experiment one (Figure 2), computed frontal plane angles were 2.83°±0.98°, −1.67°±1.99°, and −4.33°±0.53° after placing distinct 2° lateral, 2° medial, and 4° medial shims. Finally, the average angular error from cadaveric experiment two (Figure 3) over all positions was 1.73°±1.12° and 1.56°±1.45° in the sagittal and frontal planes, respectively.

Discussion

Despite the high frequency of TKA procedures, a significant number fail and need to be revised for improper component alignment. This study showed through a first-principles approach that surgeons can assess 2D orientation of the tibial component intraoperatively with 1° of accuracy with a single triaxial gyroscope rigidly affixed to the tibial plateau. Moreover, this study showed through the use of a cadaveric model that surgeons could assess 2D alignment of the tibial component with a gyroscope rigidly affixed to the tibial plateau. To our knowledge, this is first method to offer true 2D tibial tray orientation assessment using only a single triaxial gyroscope.


*Email: