header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

A SIMPLE PATIENT REGISTRATION METHOD TO REDUCE VARIATION IN CUP ORIENTATION DURING TOTAL HIP ARTHROPLASTY

The International Society for Technology in Arthroplasty (ISTA), 29th Annual Congress, October 2016. PART 1.



Abstract

INTRODUCTION

Dislocation is one of the most frequent complications in total hip arthroplasty (THA), affecting an estimated 1% to 5% of THA patients. Malposition of the acetabular cup is thought to be a likely contributor. As the field searches for solutions, new experimental methods can help engineers, scientists, and surgeons better understand the problem as well as evaluate novel techniques and products.

OBJECTIVES

Create a laboratory simulation to assess patient positioning and pelvic motion during THA. Apply this simulation to assess (1) variation in patient positioning; (2) various methods to identify the pelvic plane via palpated anatomic landmarks.

METHODS

A patient surrogate was developed to recreate patient-like modality, palpation, and motion, especially focusing on the spine's influence on pelvic flexion and rotation.

Five different registration methods were evaluated (3 supine, 2 lateral decubitus). An ASIS-to-ASIS measurement was always used in calculations. The other axes measured were: 1) supine/trunk; 2) supine/ASIS-to-Pubis; 3) supine/neutral femoral axis; 4) LD/spine; and 5) LD/trunk.

Three infrared LED markers were attached to the iliac spine of the surrogate's pelvis and monitored with an Optotrak Certus motion-tracking camera (Northern Digital). A second sensor was mounted to the top of a patient positioner (Innomed) to measure the orientation of the pelvis relative to the positioner. A third sensor was mounted to a set of calipers, which were aligned with anatomic landmarks during registration.

To compare results from registration methods, a reference orientation of the pelvis was recorded by digitizing landmarks comprising the anterior pelvic plane (APP). The APP is the plane created by three points: the left ASIS, right ASIS, and midpoint of pubic tubercles. Theoretical pelvic orientation was calculated using these digitized points. The vectors generated from the gross anatomic registration steps were used to calculate the measured orientation of the pelvis compared to theoretical. The rotation, or error, matrix between theoretical and measured pelvic orientations was computed and then projected on an APP coordinate system to translate the error matrix to cup inclination and version.

RESULTS

Inter- and intra-operator variability was good for most registration methods. The error in cup orientation when compared to the Lewinnek zone is promising. Of the 92 registrations, 91 (99%) were within the Lewinnek abduction range (30°–50°), 80 (87%) were within the Lewinnek version range (5°–25°), and 79 (85%) were within the range for both. When only considering the supine trunk and ASIS-pubis registrations, all 37 calculated cup orientations were within the Lewinnek zone.

CONCLUSIONS

By aligning an instrument with rigid body markers along two vectors, operators were able to create a patient coordinate system that translated to error of cup inclination and version of only a few degrees from the theoretical target.

The laboratory simulation developed in this study will aid scientists and engineers in evaluating novel patient positioning solutions for THA. While further research with more operators and perhaps cadaveric tissue is warranted to confirm these results, there is promise that a simple and intuitive patient registration method may reduce variation in cup placement during THA.


*Email: