header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

SIMILARITIES BETWEEN REPORTED INFLAMMATORY CELL-INDUCED CORROSION FEATURES AND ELECTROCAUTERY DAMAGE

The International Society for Technology in Arthroplasty (ISTA), 29th Annual Congress, October 2016. PART 1.



Abstract

INTRODUCTION

Due to increasing interest into taper corrosion observed primarily in hip arthroplasty devices with modular tapers, efforts towards characterizing the corrosion byproducts are prevalent in the literature [1–4]. As a result of this motivation, several studies postulate cellular induced corrosion due to the presence of remarkable features in the regions near taper junction regions and articulating surfaces [3–5]. Observations made on explanted devices from a retrieval database as well as laboratory tests have led to the alternative proposal of electrocautery-electrosurgery damage as the cause of these features. These surgical instruments are commonly used for hemostasis or different degrees of tissue dissection.

METHODS

Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were used to evaluate the features observed on retrieved devices. Retrieved devices consisted of OXINIUM and cobalt-chromium-molybdenum (CoCrMo) femoral implants, a Titanium-alloy hip stem, and a CoCrMo metal-on-metal femoral head. Electrocautery-electrosurgery damage was created using a SurgiStat II (Valleylab, Colorado) onto various components (CoCrMo, OXINIUM femoral heads as well as Ti-6Al-4V and CoCrMo alloy test stem constructs). Test components were evaluated using the same methods as the retrieved devices.

RESULTS

Remarkable features were present on retrieved devices (Figure 1) which were similar to previous studies (3–5). The appearance of these features could be described as crater-like, pitted, scratched, molten or splattered material, and ruffled. These features were present on articulating and non-articulating regions as well as near taper junctions. Testing performed on samples using the SurgiStat II, created features that were similar in appearance (Figure 1). Additionally, material transfer that included an iron peak based on EDS in addition to the cobalt and chromium (present due to native material) was detected in the regions of contact (Figure 2).

CONCLUSIONS

It was possible to re-create damage features similar to those previously characterized as remarkable features created by cellular-induced corrosion [3–5]. It is theorized that the high-voltage based electrocautery (commonly Bovie) or high-frequency based electrosurgical devices can result in localized degradation/alteration of oxides and passive regions of commonly used orthopaedic alloys. These surgical instruments, specifically the cutting electrodes, are frequently made of stainless steels which can result in iron transfer during contact with the device. During the surgical use of the electrocautery-electrosurgery instrument, it may be necessary to remove tissue, bone, or cauterize near the implant or explant which may have led to the damage features noted in this study and the previous literature [3–5]. If this damage occurs during the initial implantation of the devices, it may further exacerbate corrosion in the damaged region and/or alter the mechanical integrity of the constructs (i.e. fatigue performance).


*Email: