header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

TUMOUR-ACTIVATED MESENCHYMAL STROMAL CELLS PROMOTE OSTEOSARCOMA STEMNESS AND MIGRATORY POTENTIAL VIA IL-6 SECRETION

European Orthopaedic Research Society (EORS) 24th Annual Meeting, 14–16 September 2016. Part 2.



Abstract

Osteosarcoma (OS) is an aggressive bone malignancy with a high relapse rate despite combined treatment with surgery and multiagent chemotherapy. As for other cancers, OS-associated microenvironment may contribute to tumor initiation, growth, and metastasis. We consider mesenchymal stromal cells (MSC) as a relevant cellular component of OS microenvironment, and have previously found that the interaction between MSC and tumor cells is bidirectional: tumor cells can modulate their peripheral environment that in turn becomes more favourable to tumor growth through metabolic reprogramming (1).

Stem-like cells were derived from HOS osteosarcoma cell line by using the spherogenic system (2). CSC isolated from HOS (HOS-CSC) were co-coltured with MSC isolated from bone marrow. Cell lysates and supernatants were collected for the analysis of RNA expression and of secreted cytokines, by Q-RT-PCR and specific ELISA assays, respectively.

Here, we determined the effects of MSC on OS stemness and migration, two major features associated with recurrence and chemoresistance. Recruitment of MSC to the tumor environment leads to enhanced proliferation of OS stem cells, which increase the expression levels of TGFβ1. The latter, in turn, could be responsible for the activation of NF-kB genes and IL-6 secretion by MSC. Pro-tumorigenic effects of MSC, via IL-6, including induction of HOS-CSC migration and sphere growth, can be counteracted by IL-6 neutralizing antibody. The presence of MSC is also responsible for increased expression of adhesion molecules involved in intra- or extra-vasation.

Stromal cells in combination with OS spheres exploit a vicious cycle where the presence of CSC stimulates mesenchymal cytokine secretion, which in turn increases stemness, proliferation, migration, and metastatic potential of CSC. Furthermore, for the first time we identified a novel OS stem cell marker, the Met proto-oncogene, that is frequently overexpressed and is pathogenetically relevant in OS (2 and 3). Altogether, our data corroborates the concept that a comprehensive knowledge of the interplay between tumor and stroma that also includes the stem-like fraction of tumor cells is needed to develop novel and effective anti-cancer therapies.