header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

ANTI-ADHESIVE PROPERTIES OF A FAST-RESORBABLE, HYDROGEL ANTI-BACTERIAL IMPLANT COATING

European Orthopaedic Research Society (EORS) 24th Annual Meeting, 14–16 September 2016. Part 2.



Abstract

Development of antibacterial surfaces or coatings to prevent bacterial adhesion and hence colonization of implants and biofilm formation is an attractive option, in order to reduce the tremendous impact of implant-related infections associated with modern surgery. To overcome the lack of in vivo and clinical models, able to evaluate the performance of anti-adhesive coatings, we designed an in vitro experimental setting that allows to quantitatively evaluate the ability of a coating to reduce bacterial adhesion on a given surface; this model may efficiently serve as a surrogate endpoint to validate anti-adhesive medical devices and compounds. Here we report the results the evaluation of the anti-adhesive properties of a patented, fast-resorbable hydrogel coating, (“Defensive Antibacterial Coating”, DAC).

Sterile sandblasted titanium discs of approximately 5cm2 surface area were used as substrates for bacterial adhesion. The gel was prepared as follows: syringes prefilled with 300 mg of DAC powder (Novagenit Srl) were reconstituted with 5 ml of sterile water to obtain a hydrogel with a DAC concentration of 6%. Two experiments were conducted. In the first, 200 mg of hydrogel were homogenously spread on the surface of titanium disc, with the spreading device provided by the manufacturer. Both coated and uncoated substrates (controls) were overlaid with a standardized inoculum (108 CFU/ml) of a wild methicillin-resistant Staphylococcus aureus strain, previously isolated from a peri-prosthetic joint infection, for 15, 30, 60 and 120 minutes. Afterwards, non-adherent bacteria were removed by rinsing with sterile saline. The remaining adhered cells were seeded on agar plates for CFU count. In the second experiment, the discs were first inoculated with bacterial cells followed by a treatment with the hydrogel and bacterial count as described above. Ten discs were used for each condition and each time interval (total 160 discs).

The adhesion density of S. aureus on titanium discs pre-treated with DAC was significantly lower than that observed on untreated controls at each time point. In particular, the average number of adherent bacteria at 15, 30, 60 and 120 minutes of incubation, was respectively reduced by 86.8%, 80.4%, 74.6% and 66.7%, compared to controls (p<0.001). DAC treatment of discs with previously adhered S. aureus reduced bacterial adhesion, at 15, 30, 60 and 120 minutes of incubation, by, respectively, 84.0% (p<0.05), 72.8%, 72.3% and 64.3% (p<0.001), compared to untreated controls.

Our results shows that DAC, “Defensive Antibacterial Coating”, has anti-adhesive properties that allow to reduce bacterial adhesion on a sanded titanium surface by more than 80%, even in the presence of remarkably high bacterial loads (108 CFU/ml), of multi-resistant bacteria (MRSA) and even in the case of previous contamination. Providing anti-adhesive properties to a surface with a fast-resorbable coating may be a safe option to protect inorganic and organic surfaces and biomaterials. Those observation could be the pre-requisite for its in vivo application.