header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

DEVELOPMENT OF POLYCARBONATE URETHANE-BASED COMPOSITE FOR MENISCAL SUBSTITUTE

European Orthopaedic Research Society (EORS) 24th Annual Meeting, 14–16 September 2016. Part 2.



Abstract

Medical grade polyurethanes have been widely promoted for biomedical applications. In particular, the use of polycarbonate-urethanes (PCU) has drawn considerable attention in the orthopaedic device industry as a result of their excellent mechanical properties, biostability and biocompatibility. PCUs have been extensively utilized in vascular grafts, stents and artificial heart valves. Specifically, bionate thermoplastic PCU, commercially produced by DSM PTG (Berkeley, California), has been of great interest in the field of orthopaedics because of its outstanding load-bearing properties and excellent wear resistance. Also, it is characterized by its long-term durability and resistance to hydrolytic degradation making it a good candidate for in-vivo orthopaedic applications. PCUs have been considered for meniscal replacement because of its unique weight-bearing capabilities, ability to withstand intense forces within the knee joint and ease of lubrication due to its hydrophilic nature. In addition, the low frictional properties essential for a meniscal replacement is obtainable with PCUs.

Materials used for this study were a commercial polycarbonate-urethanes, Bionate PCU 80A (B8) and 90A (B9) pellets, and polyethylene continuous strands fibres (PE) obtained from DSM Polymer Technology Group, USA. Some quantity of the B8 and B9 pellets were dried separately in a vacuum oven at 100°C for 14 hours. A custom mould was designed for the production of the mechanical test samples. The quantity of the constituent materials was determined using composite theory known as the Rule of Mixtures.

E c = E m V m + E f E f

where Vm and Vf are the volume fraction of the matrix and fibre respectively. Three specimens each of the prepared composites were tested for tensile and compression strength and at a crosshead speed of 12 mm/min using a Zwick/Roell 1484 Material Testing Machine.

The PCUs were not as stiff as their fibre-reinforced composites, which indicate that the stiffness of the PCU composite materials is a function of both the stiffness of the PCU matrix and the interspersed fibres. The tensile moduli of composites of B8 and B9 increased appreciably with PE. An increase of 227% was obtained for the B8 with the incorporation of PE fibres while percentage increase in stiffness for B9 was 148% for PE reinforcement fibres. The compressive modulus dropped with the inclusion of the PE fibres in the B9, a reduction of 55% was recorded while an increment of 4% was obtained with PE added to the B8.

The results from this study demonstrate that the tensile and compressive properties of PCU can be custom-tailored to that of the meniscal tissue by systematically embedding reinforcement fibres into the PCU matrix such that a composite with desirable mechanical properties is obtained. The results of both tensile and compressive results visibly revealed the reinforcing effect of the fibres used in this study. However, additional studies are required to completely describe the PCU composite as a candidate meniscal substitute capable of gaining its full functionality.