header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Trauma

RETRIEVAL ANALYSIS OF THE PRECISE LIMB LENGTHENING SYSTEM

British Limb Reconstruction Society (BLRS), Leeds, March 2017



Abstract

Introduction

The Precice nail is the latest intramedullary lengthening nail with excellent early outcomes. Implant complications have led to modification of the nail design. The aim of this study was to perform a retrieval study of Precice nails following lower limb lengthening. To assess macroscopic and microscopic changes to the implants and assess differences following design modification, with identification of potential surgical, implant and patient risk factors.

Method

15 nails were retrieved from 13 patients following lower limb lengthening. Macroscopic and microscopic surface damage to the nails were identified. Further analysis included radiology and micro-CT prior to sectioning. The internal mechanism was then analysed with Scanning Electron Microscopy and Energy Dispersive X-ray Spectroscopy to identify corrosion.

Results

7 male and 3 females underwent 12 femoral lengthenings, 9 antegrade and 3 retrograde. 3 females underwent tibial lengthening. All patients obtained the desired length with no implant failure and full regenerate consolidation.

Surface degradation was noted on the telescopic part of every nail design, less on the latest implants. Microscopic analysis confirmed fretting and pitting corrosion. Following sectioning black debris was noted in all implants. The early designs were found to have fractured actuator pins and the pin and bearings had evidence of corrosive debris. The latest designs had evidence of biological deposits suggestive of fluid ingress within the nail.

Conclusion

This study suggests fluid ingress occurs with every generation of Precice nail despite modifications. The presence of biological fluid could be an early warning sign of potential corrosion. This in theory could lead to actuator pin fracture and implant failure. The clinical relevance is the potential re-use of a “dormant” nail in patients requiring secondary limb segment lengthening. Retraction of the nail in-situ and re-use for further lengthening requires careful consent for potential implant failure.