header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

A MECHANICAL ANALYSIS AND CORROSION MAPPING OF THE TAPER JUNCTION FOLLOWING FATIGUE

The International Society for Technology in Arthroplasty (ISTA), 28th Annual Congress, 2015. PART 3.



Abstract

Introduction

Modern hip replacements all have encapsulated the design concept of proximal modularity. The factors contributing to the increased wear and corrosion at the taper junction are trunnion geometry, surface characteristics, head size, impaction forces, and material coupling. This study maps the inferior and superior region of the trunnion and bore to provide a visual identification of the corrosion severity. The corrosion/wear generated inferiorly and superiorly at the bore and trunnion will be quantified to understand how corrosion is affected by mechanical stresses in relation to anatomical orientation.

Methodology

Three neck tapers generated from bar stock containing a threaded trunnion Ti-6Al-4V and 3× 32mm femoral heads (Co-Cr-Mo) with a +4 offset manufactured by Signature Orthopaedics were used within this study. Rectangular Rozzette strain gauges (Tokyo Sokki Kenkyujo Co., Ltd.) were adhered onto the inferior and superior sections of the neck section. The tapers were fatigued in accordance to ISO 7206 at 5Hz for 5 million cycles at 37 degrees Celsius in phosphate buffered saline. The tapers were sectioned from the center of the femoral head to split both trunnion and bore into superior and inferior components. SEM imaging of all surface areas for each component, per taper (4) was done under ×100 magnification. The images were used to quantify the corrosion present across the surface area using a MATLAB based program called Histomorph. To obtain a visual observation of the variation of corrosion across the bore and trunnion the proximal, medial, and distal regions were mapped together for both the superior and inferior sections.

Results

The superior region of the trunnion had a dominant tensile strain in comparison to the inferior region, which had a dominant compressive strain. Corrosion/wear of the inferior section of the trunnion was significantly higher (p<0.05) in comparison to the superior section (Figure 1). The bore had more corrosion/wear on the superior side in comparison to the inferior side however the difference was not significant.

The mapping of the trunnion shows corrosion/wear along the whole length of the inferior side and dominantly at the distal region for the superior side (Figure 2 & 3). The superior section of the trunnion had higher corrosion/wear damage across the center and distal regions of the trunnion. The subdivision of the superior section reveals that the majority of the distal section contains higher wear/corrosion damage. However the central region also has sufficient corrosion/wear extending across the width of the bore.

Conclusion

The corroded regions have shown that the type of stress present on the regions of the taper junction determines the severity of corrosion. The inferior section of the trunnion under compressive stress has significantly (p<0.05) higher corrosion/wear in comparison to the superior section dominated by tensile stress.


*Email: